Меню

Чему равна сила тока при резонансе напряжений

Резонанс напряжений и резонанс токов

В физике резонансом называется явление, при котором в колебательном контуре частота свободных колебаний совпадает с частотой вынужденных колебаний. В электричестве аналогом колебательного контура служит цепь, состоящая из сопротивления, ёмкости и индуктивности. В зависимости от того как они соединены различают резонанс напряжений и резонанс токов.

Резонанс напряжений

Резонанс напряжений возникает в последовательной RLC-цепи.

Резонанс напряжений

Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=wр, а следовательно и индуктивного и емкостного сопротивлений xL=xC. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке UL и на конденсаторе UC будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.

При резонансе напряжения UC и UL могут быть намного больше, чем напряжение источника, что опасно для цепи.

Резонанс напряжений

С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.

Резонанс напряжений

Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту

Резонанс напряжений

Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.

Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.

Резонанс токов

Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.

Резонанс токов

Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=wр, следовательно проводимости BL=BC. То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.

Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.

Резонанс токов

Выразим резонансную частоту

Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.

Явление резонанса может носить как положительный, так и отрицательный характер. Например, любой радиоприемник имеет в своей основе колебательный контур, который с помощью изменения индуктивности или емкости настраивают на нужную радиоволну. С другой стороны, явление резонанса может привести к скачкам напряжения или тока в цепи, что в свою очередь приводит к аварии.

Источник

Резонанс напряжений

Резонансом напряжений называется режим электрической цепи синусоидального тока с последовательным соединенением резистивного R, индуктивноо L и емкостного С элементов, при котором угол сдвига фаз между общим напряжением (напряжением сети) и током в цепи равен нулю.

Условием наступления резонанса напряженийявляется равенство индуктивного и емкостного сопротивлений цепи:

Электрическая цепь, питаемая синусоидальным переменным током, в которую входит конденсатор и катушка индуктивности называется колебательным контуром.

Резонанс напряжений можно получить тремя способами:

1. Изменением частоты w синусоидального тока;

2. Изменением величин индуктивности или емкости колебательного контура, при котором меняются индуктивное XL или емкостное XC сопротивление;

3. При одновременном изменении параметров w, L, C цепи колебательного контура.

Из условия резонанса напряжения (3.27) следует, что так как

XL = wL и XC = 1/wC,

то при резонансе напряжений

где wрез, рад/сек – резонансная частота.

Резонанс напряжений характеризуется рядом существенных особенностей:

1. Так как при резонансе напряжений угол сдвига фаз между напряжением и током равен нулю (j = yu – yi = 0), то коэффициент мощности при резонансе принимает наибольшее значение, равноеединице:

cosj = cos0° = 1. (3.29)

В этом случае, как видно из векторной диаграммы на рис. 3.22,а, вектор тока и вектор общего напряжения совпадают по направлению, так как они имеют равные начальные фазы yu = yi.

2. При резонансе напряжений векторы напряжения на индуктивном и емкостном элементах оказываются равными по величине и противоположными по фазе:

так как XLI = XCI, а в комплексной форме (см. рис. 3.22,а).

3. Напряжение на активном сопротивлении при резонансе напряжений оказывается равным напряжению сети (рис. 4.22,а) так как

В комплексной форме .

4. Отношение индуктивного или емкостного сопротивлений к активному сопротивлению цепи с R,L,C-элементами при резонансе называется добротностью колебательного контураQ

Умножив числитель и знаменатель этих дробей на ток I, получим выражения для добротности колебательного контура через отношения напряжений

При больших значениях индуктивного XL и емкостного XC сопротивлений и малых значениях активного сопротивления R цепи (R > U:

то есть напряжение на индуктивности и конденсаторе последовательного колебательного контура при его высокой добротности в режиме резонанса напряжений могут во много раз превысить напряжение питания.

Например, если у колебательного контура последовательной цепи с
R,L,C-элементами, питаемым синусоидальным напряжением U = 220 В, R = 1 Ом, XLрез = XCрез = 1000 Ом, то напряжение на индуктивности и конденсаторе, как следует из (3.34) равно:

ULрез = UCрез = U·Q=220·1000 = 220000 В = 220 кВ.

Поэтому при работе электротехнического оборудования, питаемого сетевым напряжением 220/380 вольт резонанс напряжений никогда не используется.

Однако в разнообразных устройствах радиотехники и электроники, где напряжение питания колебательного контура составляет микровольты
(1мкВ = 10 -6 В), резонанс напряжений широко используется, позволяя многократно усилить входной сигнал в виде синусоидального напряжения.

Рис. 3.22. Резонанс напряжений в цепи с последовательным соединением R,L,C-элементов

а) – векторная диаграмма; б) – вырожденный треугольник сопротивлений (Х = 0);

в) – вырожденный треугольник мощностей (Q = 0)

5. Так как при резонансе напряжений XL = XC (3.27), то полное сопротивление цепи принимает минимальное значение, равное активному сопротивлению:

а общее реактивное сопротивление цепи становится равным нулю:

Поэтому треугольник сопротивлений при резонансе напряжений имеет вырожденный характер, как показано на рис. 3.22,б.

6. На основании закона Ома и из формулы (3.35) следует, что ток I в цепи при резонансе напряжений достигает наибольшего значения:

Iрез = U/Zрез = U/R. (3.37)

Отсюда следует, что ток в цепи при резонансе напряжений может оказаться значительно больше тока, который мог бы быть при отсутствии резонанса.

Это свойство позволяет обнаружить резонанс напряжений при изменении частоты w, изменении индуктивности L или емкости С. Однако резонансный ток при определенных условиях опасен – он может, достигнув чрезмерно большой величины, привести к перегреву элементов цепи и выходу их из строя.

Читайте также:  Трансформатор тока шинный разъемный

7. Активная мощность при резонансе напряжений имеет наибольшее значение, так как связана с квадратом тока

P = (Iрез) 2 R, (3.38)

а ток Iрез – максимален.

8. Общая реактивная мощность Q при резонансе напряжений равна нулю:

так как UL = UC . Поэтому треугольник мощностей при резонансе имеет вырожденный характер, как показано на рис. 3.22,в.

9. При условии R > S = P, (3.40)

то есть эти мощности могут во много раз превысить потребляемую полную мощность S. При этом полная мощность S при резонансе целиком выделяется на резистивном элементе R, в виде активной мощности Р.

Физически это объясняется тем, что при резонансе напряжений происходит периодический обмен энергии магнитного поля в индуктивном элементе и энергии электрического поля в конденсаторе. При этом интенсивность этого обмена, как величины реактивных мощностей QL и QC , в сравнении с потребляемой активной мощностью Р

QL/P = XL/R = Q; QC/P = XC/R = Q (3.41)

определяется соотношениями реактивных и активного сопротивления цепи, как и для напряжений UL, UC и U, то есть добротностью Q колебательного контура цепи (см. п.4).

Кривые, выражающие зависимость полного тока I, сопротивления цепи Z, напряжения на индуктивности UL и конденсаторе UС , коэффициента мощности cosj от емкости батареи конденсатора С, называются резонансными кривыми.

На рис. 3.23 приведены резонансные кривые (UL, UС, I, Z, cosj) = f(C), построенные в общем виде при U = const и w = 2pf = const.

Рис. 3.23. Резонансные кривые UL , UС , I , Z, cosj в зависимости от емкости С
при последовательном соединении катушки индуктивности и батареи конденсаторов

Анализ этих зависимостей показывает, что при увеличении емкости С батареи конденсаторов полное сопротивление цепи Z сначала уменьшается, достигает минимума в режиме резонанса и становится равным активному сопротивлению R , а затем снова возрастает с увеличением емкости. Соответственно изменению Z меняется полный ток цепи (по закону Ома I обратно пропорционален Z): с ростом емкости конденсаторов ток I вначале увеличивается, достигает максимума в режиме резонанса, а затем вновь уменьшается.

Коэффициент мощности cosj изменяется с изменением емкости С в том же порядке: сначала с увеличением емкости С коэффициент мощности возрастает, достигая максимума равного единице в режиме резонанса, а затем уменьшается, в пределе стремясь к нулю.

Напряжения на индуктивности и конденсаторах имеют максимумы вблизи режима резонанса и становятся равными друг другу в этом режиме. Следует отметить, что достигаемые величины напряжений на конденсаторах и катушке индуктивности в режиме резонанса напряжений и вблизи него могут во много раз превышать входное напряжение приложенное ко всей цепи (см. п. 4).

С точки зрения электробезопасности и безаварийного режима работы, это следует учитывать при проведении исследования резонанса напряжения на стенде, задавая величину напряжения питания цепи U в достаточно низких пределах (U = 20 ¸ 25 В).

Таким образом, резонансные кривые позволяют установить минимальное полное сопротивление и наибольший ток в цепи при максимуме коэффициента мощности, равном единице, когда в цепи с последовательным соединением катушки индуктивности и батареи конденсаторов возникает резонанс напряжений.

Выводы:

1. Резонанс напряжений в промышленных электротехнических установках, питаемых синусоидальным сетевым напряжением 220/380 В – нежелательное и опасное явление, так как может вызвать аварийную ситуацию при возможном перенапряжении на отдельных участках цепи, привести к пробою изоляции обмоток электрических машин и аппаратов, изоляции кабелей и конденсаторов и опасно для обслуживающего персонала.

2. В то же время, резонанс напряжений широко используется в радиотехнике, в автоматике и электронике для настройки колебательных контуров в резонанс на определенную частоту, а также в различного рода приборах и устройствах, основанных на резонансном явлении.

Содержание работы

Лабораторная работа 2б делится на четыре части:

1. Подготовительная часть.

2. Измерительная часть (проведение опытов и снятие показаний приборов).

3. Расчетная часть (определение расчетных величин по формулам).

4. Оформительская часть (построение векторных диаграмм).

Примечание

Электромонтажные работы по исследованию резонанса напряжений в цепи с последовательным соединением R,L,C-элементов на модернизированном лабораторном стенде ЭВ-4 не проводятся, в отличие от работ на старых стендах (см. в [2] – Работа 2б, п.2. Электромонтажная часть).

1. Подготовительная часть

Подготовка к проведению лабораторной работы включает:

1. Изучение теоретической части настоящего пособия и литературы [1,2,3,4], относящихся к теме данной работы.

2. Предварительное оформление лабораторной работы в соответствии с существующими требованиями [2,3].

В результате предварительного оформления лабораторной работы №2б в рабочей тетради или журнале (на листах формата А4 с компьютерной распечаткой) студентом должен быть заполнен титульный лист, в работе должны быть указаны название работы и ее цель, приведены основные сведения по работе, взятые из раздела выше и формулы, необходимые для вычисления расчетных величин, представлены принципиальные и эквивалентные схемы замещения, заготовлены таблицы, соответственно числу опытов в работе.

Кроме этого, должно быть оставлено свободное место для построения векторных диаграмм.

2. Измерительная часть

Необходимые измерения параметров исследуемой цепи однофазного тока с последовательным соединением электроприемников при резонансе напряжений проводятся с помощью принципиальной схемы (рис. 3.24). Данная схема соответствует панели модернизированног стенда ЭВ-4 [4] с аналогичной мнемосхемой и цифровыми измерительными приборами (см. фото на рис. 3.26).

Для более заметного вида резонансных кривых в последовательной цепи электроприемников резистор R отсутствует (на принципиальной схеме рис. 3.23 он зашунтирован).

Этой схеме соответствует схема замещения с последовательно соединенными катушкой индуктивности и батареей конденсаторов, показанная на рис. 3.25.

3.24 Принципиальная схема цепи с последовательно соединенными
катушкой индуктивности и батареей конденсаторов
для исследования резонанса напряжений

3.25 Схема замещения цепи с последовательно соединенными
катушкой индуктивности и батареей конденсаторов
для исследования резонанса напряжений

1. Перед подачей питания к исследуемой цепи на панели стенда с мнемосхемой и цифровыми измерительными приборами (рис. 3.26) перевести все выключатели (S1 ÷ S6, S’1 ÷ S’6), расположенные на этой панели, в нижнее положение (состояние – «откл»).

Рис. 3.26. Паналь стенда с цифровыми измерительными приборами и
мнемосхемой для проведения лабораторой работы 2б «Резонанс напряжений
в однофазной цепи с активно-реактивными элементами»

Читайте также:  Tp ms3463s pb801 уменьшить ток подсветки

2. На панели стенда из последовательной цепи R,L,C-элементов исключить резистор R, зашунтировав его с помощью электромонтажного провода (красный провод-шунт на принципиальной схеме рис. 3.24) вставив его концы в гнезда по бокам вольтметра VR.

3. Установить начальную общую емкость конденсаторов С = 40 мкФ нажатием соответствующих черных кнопок выключателей рядом с подключаемыми конденсаторами на панели №4 стенда с мнемосхемой батареи конденсаторов (см. рис. 3.28).

4. Подключить лабораторный автотрансформатор (ЛАТР), установленный на горизонтальной панели блока питания (рис. 3.27) к сетевому напряжению (

220 В), нажав черные кнопки «вкл» выключателей. При этом загораются две сигнальные лампы «сеть». После этого нужнообязательноповернуть ручку регулятора ЛАТРАа против часовой стрелки до упора, тем самым, снизив напряжение на его выходе до нуля.

Рис. 3.27. Панель блока питания лабораторного стенда

Рис. 3.28. Панель №4 стенда с мнемосхемами батареи конденсаторов
и катушки индуктивности

5. Подать регулируемое напряжение от ЛАТРа ко входу исследуемой цепи и подключить цифровые измерительные приборы, установив на панели стенда с мнемосхемой кнопки всех выключателей (S1 ÷ S6, S’1 ÷ S’6) в положение «вкл». При этом должны засветиться зеленые цифры на электроизмерительных приборах.

6. Плавным поворотом по часовой стрелке ручки регулятора ЛАТРа (рис. 3.27) установить напряжение U на входе цепи порядка 20 ÷ 25 В, контролируя его цифровым вольтметром V (прибор ЩП02М, установленный слева на панели стенда – рис. 4.26). Следует поддерживать установленное напряжение постоянным во всех опытах с помощью ЛАТРа.

7. В процессе исследования цепи с последовательно соединенными катушкой индуктивности и батареей конденсаторов провести 9 опытов с различной емкостью батареи конденсаторов (величины емкостей для каждого опыта указаны в табл. 3.5) нажатием соответствующих кнопок выключателей на панели №4 стенда (рис. 3.28), постепенно увеличивая емкость с 40 мкФ до 200 мкФ. Перед подключением дополнительных конденсаторов в каждом опыте нужно обязательно отключить исследуемую цепь от источника питания (выхода ЛАТРа), переведя выключатели (S1, S’1) в нижнее положение «откл», а перед проведением замеров вновь подключить к напряжению питания цепь с помощью тех же выключателей.

8. Во всех опытах измерить входное напряжение U, потребляемую активную мощность Р и протекающий по цепи ток I, соответственно цифровыми измерительными приборами: вольтметром V, ваттметром W и амперметром А (см. принципиальную схему на рис. 3.24 и панель стенда на рис. 3.26).

9. Напряжение на батарее конденсаторов UС и напряжение на катушке индуктивности UК с параметрами RK, LK измерить цифровыми вольтметрами, соответственно VC и VK, установленными на панели стенда (см. рис. 3.26).

10. Полученные результаты измерений каждого опыта занести в таблицу 3.5.

11. В конце измерительной части данной работы нужно отключить исследуемую цепь от источника питания и сам блок питания от силового щитка с помощью выключателей S1 и S1 ‘ на панели с мнемосхемой (рис. 3.26) и красной кнопки «выкл» выключателя на панели блока питания (рис. 3.27). Сообщить преподавателю об окончании измерений и приступить к вычислениям параметров цепи.

Источник



Чему равна сила тока при резонансе напряжений

§ 59. Понятие о резонансе напряжений

В цепи переменного тока с активным, индуктивным и емкостным сопротивлениями, соединенными последовательно (рис. 62, а), может возникнуть резонанс напряжений.

При резонансе напряжения на зажимах индуктивного и емкостного сопротивлений могут стать значительно больше, чем напряжение на зажимах цепи.
Резонанс напряжений наступает в том случае, если индуктивное сопротивление XL и емкостное сопротивление Xc равны между собой, т. е.

Допустим, что подбором индуктивиости и емкости или изменением частоты создано условие, при котором XL = Xc Когда цепь не настроена в резонанс, то ее полное сопротивление

а в рассматриваемой цепи при резонансе (когда XL = Xc) ее полное сопротивление

Таким образом, полное сопротивление цепи при резонансе оказывается равным активному сопротивлению.
Уменьшение полного сопротивления цепи приводит к тому, что сила тока в ней возрастает. Напряжение генератора переменного тока, включенного в цепь, расходуется на активном сопротивлении

Напряжение на индуктивности определяется, согласно закону Ома, произведением силы тока на величину индуктивного сопротивления. Так как в цепи увеличилась сила тока, то напряжение UL = I XL возросло.
Напряжение на емкости также определяется произведением тока на величину емкостного сопротивления. Поэтому напряжение на емкости Uc = I Xc.
В связи с тем, что в последовательно соединенных сопротивлениях протекает одинаковый ток и при резонансе индуктивное сопротивление XL равно емкостному сопротивлению Хс, напряжение на индуктивности и напряжение на емкости равны:

Если одновременно увеличить оба реактивных сопротивления ХL и Хc, не нарушая при этом условия резонанса ХL = Хc, то соответственно возрастут оба частичных напряжения UL и Xc, а сила тока в цепи при этом не изменится. Таким путем можно получить UL и Uc во много раз большие, чем напряжение U на зажимах цепи.
Построим векторную диаграмму (рис. 62, б) для рассматриваемой цепи при резонансе напряжения. Отложим по горизонтали в выбранном масштабе вектор тока . В активном сопротивлении ток и напряжение совпадают по фазе. Поэтому вектор напряжения отложим по вектору тока. Так как напряжение на индуктивности опережает ток на 90°, то вектор отложим вверх под углом 90°.
Напряжение на емкости отстает от тока на 90°, поэтому вектор , равный вектору , отложим вниз под углом 90° к вектору тока. На векторной диаграмме видно, что напряжение на индуктивности и напряжение на емкости равны и сдвинуты по фазе друг относительно друга на 180° и взаимно компенсируются.
Угол сдвига фаз между током и напряжением при резонансе равен нулю. Это значит, что ток и напряжение совпадают по фазе (как в цепи с активным сопротивлением).

Пример. В цепь переменного тока включены последовательно активное сопротивление r = 5 ом, индуктивность L = 0,005 гн и емкость 63,5 мкф. Генератор, включенный в цепь, вырабатывает переменное напряжение U = 2,5 в с резонансной частотой f = 285 гц. Определить индуктивное и емкостное сопротивления, полное сопротивление цепи, ток, протекающий в цепи, напряжение на емкости и на индуктивности.
Решение . Индуктивное сопротивление

XL = 2πf L = 2 · 3,14 · 285 · 0,005 = 8,9 ом,

Индуктивное сопротивление равно емкостному сопротивлению и, следовательно, в цепи наступает резонанс напряжения.
Полное сопротивление цепи при резонансе

Читайте также:  Как подсчитать мощность переменного тока

Сила тока в цепи

Напряжение на индуктивности

UL = I XL = 0,38 · 8,9 = 7,4 в

Напряжение на емкости

Uc = I Xc = 0,38 · 8,9 = 7,4 в

Как видно из приведенного примера, напряжения на индуктивности и емкости равны и превышают напряжение генератора.

Источник

§56. Резонанс напряжений и резонанс токов

Явление резонанса.

Электрическая цепь, содержащая индуктивность и емкость, может служить колебательным контуром, где возникает процесс колебаний электрической энергии, переходящей из индуктивности в емкость и обратно. В идеальном колебательном контуре эти колебания будут незатухающими.

При подсоединении колебательного контура к источнику переменного тока угловая частота источника ω может оказаться равной угловой частоте ω, с которой происходят колебания электрической энергии в контуре. В этом случае имеет место явление резонанса, т. е. совпадения частоты свободных колебаний ω, возникающих в какой-либо физической системе, с частотой вынужденных колебаний ω, сообщаемых этой системе внешними силами.

Резонанс в электрической цепи можно получить тремя способами: изменяя угловую частоту ω источника переменного тока, индуктивность L или емкость С. Различают резонанс при последовательном соединении L и С — резонанс напряжений и при параллельном их соединении — резонанс токов. Угловая частота ω, при которой наступает резонанс, называется резонансной, или собственной частотой колебаний резонансного контура.

Резонанс напряжений.

При резонансе напряжений (рис. 196, а) индуктивное сопротивление XL равно емкостному Хс и полное сопротивление Z становится равным активному сопротивлению R:

В этом случае напряжения на индуктивности UL и емкости Uc равны и находятся в противофазе (рис. 196,б), поэтому при сложении они компенсируют друг друга. Если активное сопротивление цепи R невелико, ток в цепи резко возрастает, так как реактивное сопротивление цепи X = XL—Xс становится равным нулю. При этом ток I совпадает по фазе с напряжением U и I=U/R. Резкое возрастание тока в цепи при резонансе напряжений вызывает такое же возрастание напряжений UL и Uc, причем их значения могут во много раз превышать напряжение U источника, питающего цепь.

Угловая частота ω0, при которой имеют место условия резонанса, определяется из равенства ωoL = 1/(ωС).

Рис. 196. Схема (а) и векторная диаграмма (б) электрической цепи, содержащей R, L и С, при резонансе напряжений

Рис. 196. Схема (а) и векторная диаграмма (б) электрической цепи, содержащей R, L и С, при резонансе напряжений

Если плавно изменять угловую частоту ω источника, то полное сопротивление Z сначала начинает уменьшаться, достигает наименьшего значения при резонансе напряжений (при ωo), а затем увеличивается (рис. 197, а). В соответствии с этим ток I в цепи сначала возрастает, достигает наибольшего значения при резонансе, а затем уменьшается.

Рис. 197. Зависимость тока I и полного сопротивления Z от ω для последовательной (а) и параллельной (б) цепей переменного тока

Рис. 197. Зависимость тока I и полного сопротивления Z от ω для последовательной (а) и параллельной (б) цепей переменного тока

Резонанс токов.

Резонанс токов может возникнуть при параллельном соединении индуктивности и емкости (рис. 198, а). В идеальном случае, когда в параллельных ветвях отсутствует активное сопротивление (R1=R2 = 0), условием резонанса токов является равенство реактивных сопротивлений ветвей, содержащих индуктивность и емкость, т. е. ωoL = 1/(ωoC).

Рис. 198. Электрическая схема (а) и векторные диаграммы (б и в) при резонансе токов

Так как в рассматриваемом случае активная проводимость G = 0, ток в неразветвленной части цепи при резонансе I=U √(G 2 +(BL-BC) 2 )= 0. Значения токов в ветвях I1 и I2 будут равны (рис. 198,б), но токи будут сдвинуты по фазе на 180° (ток IL в индуктивности отстает по фазе от напряжения U на 90°, а ток в емкости I с опережает напряжение U на 90°).

Следовательно, такой резонансный контур представляет собой для тока I бесконечно большое сопротивление и электрическая энергия в контур от источника не поступает. В то же время внутри контура протекают токи IL и Iс, т. е. имеет место процесс непрерывного обмена энергией внутри контура. Эта энергия переходит из индуктивности в емкость и обратно.

Как следует из формулы (74), изменяя значения емкости С или индуктивности L, можно изменять частоту колебаний ω электрической энергии и тока в контуре, т. е. осуществлять настройку контура на требуемую частоту.

Если бы в ветвях, в которых включены индуктивность и емкость, не было активного сопротивления, этот процесс колебания энергии продолжался бы бесконечно долго, т. е. в контуре возникли бы незатухающие колебания энергии и токов IL и Iс.

Однако реальные катушки индуктивности и конденсаторы всегда поглощают электрическую энергию (из-за наличия в катушках активного сопротивления проводов и возникновения в конденсаторах токов смещения, нагревающих диэлектрик), поэтому в реальный контур при резонансе токов поступает от источника некоторая электрическая энергия и по неразветвленной части цепи протекает некоторый ток I.

Условием резонанса в реальном резонансном контуре, содержащем активные сопротивления R1 и R2, будет равенство реактивных проводимостей BL = BC ветвей, в которые включены индуктивность и емкость.

Из рис. 198, в следует, что ток I в неразветвленной части цепи совпадает по фазе с напряжением U, так как реактивные токи 1L и Iс равны, но противоположны по фазе, вследствие чего их векторная сумма равна нулю.

Если в рассматриваемой параллельной цепи изменять частоту ωо источника переменного тока, то полное сопротивление цепи начинает увеличиваться, достигает наибольшего значения при резонансе, а затем уменьшается (см. рис. 197,б). В соответствии с этим ток I начинает уменьшаться, достигает наименьшего значения Imin = Ia при резонансе, а затем увеличивается.

В реальных колебательных контурах, содержащих активное сопротивление, каждое колебание тока сопровождается потерями энергии. В результате сообщенная контуру энергия довольно быстро расходуется и колебания тока постепенно затухают. Для получения незатухающих колебаний необходимо все время пополнять потери энергии в активном сопротивлении, т. е. такой контур должен быть подключен к источнику переменного тока соответствующей частоты ω.

Явления резонанса напряжения и тока и колебательный контур получили весьма широкое применение в радиотехнике и высокочастотных установках. При помощи колебательных контуров мы получаем токи высокой частоты в различных радиоустройствах и высокочастотных генераторах.

Колебательный контур — важнейший элемент любого радиоприемника. Он обеспечивает его избирательность, т. е. способность выделять из радиосигналов с различной длиной волны (т. е. с различной частотой), посланных различными радиостанциями, сигналы определенной радиостанции.

Источник

Чему равна сила тока при резонансе напряжений



Что такое резонанс напряжений?

Резонансные явления наблюдаются в колебательных системах, когда частота собственных колебаний элементов системы совпадает с частотой внешних (вынужденных) колебательных процессов. Данное утверждение справедливо и для цепей с циркулирующим переменным током. В таких электрических цепях при наличии определённых условий возникает резонанс напряжений, что влияет на параметры тока. Явление резонанса в электротехнике может быть полезным или вредным, в зависимости от ситуации, в которой происходит процесс.

Описание явления

Если в некой электрической цепи (см. рис. 1) имеются ёмкостные и индуктивные элементы, которые обладают собственными резонансными частотами, то при совпадении этих частот амплитуда колебаний резко возрастёт. То есть происходит резкий всплеск напряжений на этих элементах. Это может вызвать разрушение элементов электрической цепи.

Давайте рассмотрим на этом примере, какие явления будут происходить при подключении генератора переменного тока к контактам схемы. Заметим, что катушки и конденсаторы обладают свойствами, которые можно сравнить с аналогом реактивного резистора. В частности, дроссель в электрической цепи создаёт индуктивное сопротивление. Конденсатор является причиной ёмкостного сопротивления.

Индуктивный элемент вызывает сдвиг фаз, характеризующийся отставанием тока от напряжения на ¼ периода. Под действием конденсатора ток, наоборот, на ¼ периода опережает напряжение.

Другими словами, действие индуктивности противоположно действию на сдвиг фаз ёмкостного сопротивления. То есть катушки индуктивности и ёмкостные элементы по-разному воздействуют на генератор и по-своему корректируют фазовые соотношения между электрическим током и напряжением.

Формула

Общее реактивное сопротивление рассматриваемых нами элементов равно сумме сопротивлений каждого из них. С учётом противоположности действий можно записать: X общ = X L — X c , где X L = ωL — индуктивное реактивное сопротивление, выражение X c = 1/ωC — это ёмкостное реактивное сопротивление.

На рисунке 2 изображены графики зависимости полного сопротивления цепи и связанной с ним силы тока, от реактивного сопротивления индуктивного элемента. Обратите внимание на то, как падает полное сопротивление при уменьшении реактивной сопротивляемости R L (график б) и как при этом возрастает ток (график в).

Электрические цепи, состоящие из последовательно соединённых конденсаторов, пассивный резисторов и катушек индуктивности называют последовательными резонансными (колебательными) контурами (см. рис. 2). Существуют также параллельные контуры, в которых R, L, C элементы подключены параллельно (рис. 3).

В режиме резонанса мощность источника питания будет рассеиваться только на активных сопротивлениях (в том числе на активном сопротивлении катушки). Для резонансных контуров характерны потери только активной мощности, которая израсходуется на поддержание колебательного процесса. Реактивная мощность на L C — элементах при этом не расходуется. Ток в резонансном режиме принимает максимальное значение:

Величину Q принято называть термином «Добротность контура». Данный параметр показывает, во сколько раз напряжение, возникшее на контактах реактивных элементов, превышает входное напряжение U электрической сети. Для описания соотношения выходного и входного напряжений часто применяют коэффициент K. При резонансе:

K = U вых / U вх = U C0 / U = Q

Формулировка

На основании вышеописанных явлений, сформулируем определение резонансного напряжения: «Если общее падение напряжения на ёмкостно-индуктивных элементах равно нулю, а амплитуда тока – максимальна, то такое особое состояние системы называется резонансом напряжений». Для лучшего понимания явления, немного перефразируем определение: резонансом напряжений является состояние, когда напряжение на CL — цепочке больше чем на входе электрической цепи.

Описанное явление довольно распространено в электротехнике. Иногда с ним борются, а иногда специально создают условия для образования резонанса. Основными характеристиками всякого резонансного контура являются параметры добротности и частоты [ 1 ].

В случае, если X L = X c – справедливо равенство: ωL = 1/ωC , отсюда получаем:

Если ω = ω 0 – возникает резонанс напряжений. Частоты совпадают в том случае, когда индуктивное сопротивление сравняется с ёмкостным сопротивлением конденсатора. В таких случаях в цепи будет действовать только активное сопротивление R. Наличие реактивных элементов в схеме приводит к увеличению полного сопротивления цепи (Z):

где R – общее активное сопротивление.

Учитывая, что по закону Ома U = I/Z, можно утверждать, что общее напряжение в цепи зависит, в том числе, и от слагаемых индуктивного и ёмкостного сопротивлений.

Если бы в рассматриваемой схеме (рис. 1) отсутствовало активное сопротивление R, то значение полного сопротивления Z стремилось бы к 0. Следовательно, напряжение на реактивных элементах при этом возрастает до критического уровня.

Поскольку X L и X c зависят от частоты входного напряжения, то для возникновения резонанса следует подобрать соответствующую частоту сети, или изменять параметры катушки, либо конденсатора до тех пор, пока резонансные частоты не совпадут. Любое нарушение условий резонанса немедленно приводит к выходу системы из резонансного режима с последующим падением напряжения.

Условия наступления

Резонансные явления наступают только при наличии следующих условий:

  1. Наличие минимального активного сопротивления на участке электрической цепи.
  2. Равенство реактивных сопротивлений, возникших на цепочке LC.
  3. Совпадение входной частоты источника питания с резонансной частотой колебательного контура.

При резонансе в контуре напряжения на его элементах могут повышаться на порядок и больше.

Примеры применения на практике

Классическим примером применения резонанса колебательных контуров является настройка радиоприёмника на частоту соответствующей радиостанции. В качестве рабочего элемента настроечного узла используется конденсатор с регулируемой ёмкостью. Вращение ручки настройки изменяет ёмкость конденсатора, а значит и резонансную частоту контура.

В момент совпадения резонансной частоты с рабочей частотой какой-либо радиостанции возникает резонанс напряжений, в результате которого резко возрастает амплитуда колебаний принятой радиоприёмником частоты. Специальные фильтры отделяют эти колебания от несущих радиочастот, а усилители усиливают полученные сигналы. В динамике появляются звуки, генерируемые передатчиком радиостанции.

Читайте также:  Плотность тока в цилиндре электронной лампы

Колебательные контуры, построенные на принципе последовательного соединения LC-элементов, применяются в цепях питания высокоомных нагрузок, потребляющих токи повышенного напряжения. Такие же устройства применяют в полосовых фильтрах.

Последовательный резонанс применяют при пониженных напряжениях сети. В этом случае используют реактивную энергию обмоток трансформатора, соединённых последовательно.

Конденсаторы и различные катушки индуктивности (рис. 5) входят в конструкцию практически всех аналоговых устройств. Они используются для настройки фильтров или для управления токами в отдельных узлах.

Важно знать, что резонансные контуры не увеличивают количество электрической энергии в цепях. Они лишь могут повышать напряжения, иногда до опасных значений. Постоянный ток не причиной резонансных явлений.

Наряду с полезными свойствами резонансных явлений, в практической электротехнике часто возникают ситуации, когда резонанс напряжений приносит вред. В основном это связано с нежелательным повышением параметров тока на участках цепей. Примером могут служить опасное резонансные явления в кабельных линиях без нагрузки, что может привести к пробоям изоляции. Чтобы этого не случилось, на концевых участках таких линий устанавливают балластные нагрузочные элементы.

Источник

Резонанс напряжений

Резонансом напряжений называется режим электрической цепи синусоидального тока с последовательным соединенением резистивного R, индуктивноо L и емкостного С элементов, при котором угол сдвига фаз между общим напряжением (напряжением сети) и током в цепи равен нулю.

Условием наступления резонанса напряженийявляется равенство индуктивного и емкостного сопротивлений цепи:

Электрическая цепь, питаемая синусоидальным переменным током, в которую входит конденсатор и катушка индуктивности называется колебательным контуром.

Резонанс напряжений можно получить тремя способами:

1. Изменением частоты w синусоидального тока;

2. Изменением величин индуктивности или емкости колебательного контура, при котором меняются индуктивное XL или емкостное XC сопротивление;

3. При одновременном изменении параметров w, L, C цепи колебательного контура.

Из условия резонанса напряжения (3.27) следует, что так как

XL = wL и XC = 1/wC,

то при резонансе напряжений

где wрез, рад/сек – резонансная частота.

Резонанс напряжений характеризуется рядом существенных особенностей:

1. Так как при резонансе напряжений угол сдвига фаз между напряжением и током равен нулю (j = yu – yi = 0), то коэффициент мощности при резонансе принимает наибольшее значение, равноеединице:

cosj = cos0° = 1. (3.29)

В этом случае, как видно из векторной диаграммы на рис. 3.22,а, вектор тока и вектор общего напряжения совпадают по направлению, так как они имеют равные начальные фазы yu = yi.

2. При резонансе напряжений векторы напряжения на индуктивном и емкостном элементах оказываются равными по величине и противоположными по фазе:

так как XLI = XCI, а в комплексной форме (см. рис. 3.22,а).

3. Напряжение на активном сопротивлении при резонансе напряжений оказывается равным напряжению сети (рис. 4.22,а) так как

В комплексной форме .

4. Отношение индуктивного или емкостного сопротивлений к активному сопротивлению цепи с R,L,C-элементами при резонансе называется добротностью колебательного контураQ

Умножив числитель и знаменатель этих дробей на ток I, получим выражения для добротности колебательного контура через отношения напряжений

При больших значениях индуктивного XL и емкостного XC сопротивлений и малых значениях активного сопротивления R цепи (R > U:

то есть напряжение на индуктивности и конденсаторе последовательного колебательного контура при его высокой добротности в режиме резонанса напряжений могут во много раз превысить напряжение питания.

Например, если у колебательного контура последовательной цепи с
R,L,C-элементами, питаемым синусоидальным напряжением U = 220 В, R = 1 Ом, XLрез = XCрез = 1000 Ом, то напряжение на индуктивности и конденсаторе, как следует из (3.34) равно:

ULрез = UCрез = U·Q=220·1000 = 220000 В = 220 кВ.

Поэтому при работе электротехнического оборудования, питаемого сетевым напряжением 220/380 вольт резонанс напряжений никогда не используется.

Однако в разнообразных устройствах радиотехники и электроники, где напряжение питания колебательного контура составляет микровольты
(1мкВ = 10 -6 В), резонанс напряжений широко используется, позволяя многократно усилить входной сигнал в виде синусоидального напряжения.

Рис. 3.22. Резонанс напряжений в цепи с последовательным соединением R,L,C-элементов

а) – векторная диаграмма; б) – вырожденный треугольник сопротивлений (Х = 0);

в) – вырожденный треугольник мощностей (Q = 0)

5. Так как при резонансе напряжений XL = XC (3.27), то полное сопротивление цепи принимает минимальное значение, равное активному сопротивлению:

а общее реактивное сопротивление цепи становится равным нулю:

Поэтому треугольник сопротивлений при резонансе напряжений имеет вырожденный характер, как показано на рис. 3.22,б.

6. На основании закона Ома и из формулы (3.35) следует, что ток I в цепи при резонансе напряжений достигает наибольшего значения:

Iрез = U/Zрез = U/R. (3.37)

Отсюда следует, что ток в цепи при резонансе напряжений может оказаться значительно больше тока, который мог бы быть при отсутствии резонанса.

Это свойство позволяет обнаружить резонанс напряжений при изменении частоты w, изменении индуктивности L или емкости С. Однако резонансный ток при определенных условиях опасен – он может, достигнув чрезмерно большой величины, привести к перегреву элементов цепи и выходу их из строя.

7. Активная мощность при резонансе напряжений имеет наибольшее значение, так как связана с квадратом тока

P = (Iрез) 2 R, (3.38)

а ток Iрез – максимален.

8. Общая реактивная мощность Q при резонансе напряжений равна нулю:

так как UL = UC . Поэтому треугольник мощностей при резонансе имеет вырожденный характер, как показано на рис. 3.22,в.

9. При условии R > S = P, (3.40)

то есть эти мощности могут во много раз превысить потребляемую полную мощность S. При этом полная мощность S при резонансе целиком выделяется на резистивном элементе R, в виде активной мощности Р.

Физически это объясняется тем, что при резонансе напряжений происходит периодический обмен энергии магнитного поля в индуктивном элементе и энергии электрического поля в конденсаторе. При этом интенсивность этого обмена, как величины реактивных мощностей QL и QC , в сравнении с потребляемой активной мощностью Р

Читайте также:  Чем измерить направление тока

QL/P = XL/R = Q; QC/P = XC/R = Q (3.41)

определяется соотношениями реактивных и активного сопротивления цепи, как и для напряжений UL, UC и U, то есть добротностью Q колебательного контура цепи (см. п.4).

Кривые, выражающие зависимость полного тока I, сопротивления цепи Z, напряжения на индуктивности UL и конденсаторе UС , коэффициента мощности cosj от емкости батареи конденсатора С, называются резонансными кривыми.

На рис. 3.23 приведены резонансные кривые (UL, UС, I, Z, cosj) = f(C), построенные в общем виде при U = const и w = 2pf = const.

Рис. 3.23. Резонансные кривые UL , UС , I , Z, cosj в зависимости от емкости С
при последовательном соединении катушки индуктивности и батареи конденсаторов

Анализ этих зависимостей показывает, что при увеличении емкости С батареи конденсаторов полное сопротивление цепи Z сначала уменьшается, достигает минимума в режиме резонанса и становится равным активному сопротивлению R , а затем снова возрастает с увеличением емкости. Соответственно изменению Z меняется полный ток цепи (по закону Ома I обратно пропорционален Z): с ростом емкости конденсаторов ток I вначале увеличивается, достигает максимума в режиме резонанса, а затем вновь уменьшается.

Коэффициент мощности cosj изменяется с изменением емкости С в том же порядке: сначала с увеличением емкости С коэффициент мощности возрастает, достигая максимума равного единице в режиме резонанса, а затем уменьшается, в пределе стремясь к нулю.

Напряжения на индуктивности и конденсаторах имеют максимумы вблизи режима резонанса и становятся равными друг другу в этом режиме. Следует отметить, что достигаемые величины напряжений на конденсаторах и катушке индуктивности в режиме резонанса напряжений и вблизи него могут во много раз превышать входное напряжение приложенное ко всей цепи (см. п. 4).

С точки зрения электробезопасности и безаварийного режима работы, это следует учитывать при проведении исследования резонанса напряжения на стенде, задавая величину напряжения питания цепи U в достаточно низких пределах (U = 20 ¸ 25 В).

Таким образом, резонансные кривые позволяют установить минимальное полное сопротивление и наибольший ток в цепи при максимуме коэффициента мощности, равном единице, когда в цепи с последовательным соединением катушки индуктивности и батареи конденсаторов возникает резонанс напряжений.

Выводы:

1. Резонанс напряжений в промышленных электротехнических установках, питаемых синусоидальным сетевым напряжением 220/380 В – нежелательное и опасное явление, так как может вызвать аварийную ситуацию при возможном перенапряжении на отдельных участках цепи, привести к пробою изоляции обмоток электрических машин и аппаратов, изоляции кабелей и конденсаторов и опасно для обслуживающего персонала.

2. В то же время, резонанс напряжений широко используется в радиотехнике, в автоматике и электронике для настройки колебательных контуров в резонанс на определенную частоту, а также в различного рода приборах и устройствах, основанных на резонансном явлении.

Содержание работы

Лабораторная работа 2б делится на четыре части:

1. Подготовительная часть.

2. Измерительная часть (проведение опытов и снятие показаний приборов).

3. Расчетная часть (определение расчетных величин по формулам).

4. Оформительская часть (построение векторных диаграмм).

Примечание

Электромонтажные работы по исследованию резонанса напряжений в цепи с последовательным соединением R,L,C-элементов на модернизированном лабораторном стенде ЭВ-4 не проводятся, в отличие от работ на старых стендах (см. в [2] – Работа 2б, п.2. Электромонтажная часть).

1. Подготовительная часть

Подготовка к проведению лабораторной работы включает:

1. Изучение теоретической части настоящего пособия и литературы [1,2,3,4], относящихся к теме данной работы.

2. Предварительное оформление лабораторной работы в соответствии с существующими требованиями [2,3].

В результате предварительного оформления лабораторной работы №2б в рабочей тетради или журнале (на листах формата А4 с компьютерной распечаткой) студентом должен быть заполнен титульный лист, в работе должны быть указаны название работы и ее цель, приведены основные сведения по работе, взятые из раздела выше и формулы, необходимые для вычисления расчетных величин, представлены принципиальные и эквивалентные схемы замещения, заготовлены таблицы, соответственно числу опытов в работе.

Кроме этого, должно быть оставлено свободное место для построения векторных диаграмм.

2. Измерительная часть

Необходимые измерения параметров исследуемой цепи однофазного тока с последовательным соединением электроприемников при резонансе напряжений проводятся с помощью принципиальной схемы (рис. 3.24). Данная схема соответствует панели модернизированног стенда ЭВ-4 [4] с аналогичной мнемосхемой и цифровыми измерительными приборами (см. фото на рис. 3.26).

Для более заметного вида резонансных кривых в последовательной цепи электроприемников резистор R отсутствует (на принципиальной схеме рис. 3.23 он зашунтирован).

Этой схеме соответствует схема замещения с последовательно соединенными катушкой индуктивности и батареей конденсаторов, показанная на рис. 3.25.

3.24 Принципиальная схема цепи с последовательно соединенными
катушкой индуктивности и батареей конденсаторов
для исследования резонанса напряжений

3.25 Схема замещения цепи с последовательно соединенными
катушкой индуктивности и батареей конденсаторов
для исследования резонанса напряжений

1. Перед подачей питания к исследуемой цепи на панели стенда с мнемосхемой и цифровыми измерительными приборами (рис. 3.26) перевести все выключатели (S1 ÷ S6, S’1 ÷ S’6), расположенные на этой панели, в нижнее положение (состояние – «откл»).

Рис. 3.26. Паналь стенда с цифровыми измерительными приборами и
мнемосхемой для проведения лабораторой работы 2б «Резонанс напряжений
в однофазной цепи с активно-реактивными элементами»

2. На панели стенда из последовательной цепи R,L,C-элементов исключить резистор R, зашунтировав его с помощью электромонтажного провода (красный провод-шунт на принципиальной схеме рис. 3.24) вставив его концы в гнезда по бокам вольтметра VR.

Читайте также:  Сила тока в проводнике сопротивлением 2 ком равна 3ма

3. Установить начальную общую емкость конденсаторов С = 40 мкФ нажатием соответствующих черных кнопок выключателей рядом с подключаемыми конденсаторами на панели №4 стенда с мнемосхемой батареи конденсаторов (см. рис. 3.28).

4. Подключить лабораторный автотрансформатор (ЛАТР), установленный на горизонтальной панели блока питания (рис. 3.27) к сетевому напряжению (

220 В), нажав черные кнопки «вкл» выключателей. При этом загораются две сигнальные лампы «сеть». После этого нужнообязательноповернуть ручку регулятора ЛАТРАа против часовой стрелки до упора, тем самым, снизив напряжение на его выходе до нуля.

Рис. 3.27. Панель блока питания лабораторного стенда

Рис. 3.28. Панель №4 стенда с мнемосхемами батареи конденсаторов
и катушки индуктивности

5. Подать регулируемое напряжение от ЛАТРа ко входу исследуемой цепи и подключить цифровые измерительные приборы, установив на панели стенда с мнемосхемой кнопки всех выключателей (S1 ÷ S6, S’1 ÷ S’6) в положение «вкл». При этом должны засветиться зеленые цифры на электроизмерительных приборах.

6. Плавным поворотом по часовой стрелке ручки регулятора ЛАТРа (рис. 3.27) установить напряжение U на входе цепи порядка 20 ÷ 25 В, контролируя его цифровым вольтметром V (прибор ЩП02М, установленный слева на панели стенда – рис. 4.26). Следует поддерживать установленное напряжение постоянным во всех опытах с помощью ЛАТРа.

7. В процессе исследования цепи с последовательно соединенными катушкой индуктивности и батареей конденсаторов провести 9 опытов с различной емкостью батареи конденсаторов (величины емкостей для каждого опыта указаны в табл. 3.5) нажатием соответствующих кнопок выключателей на панели №4 стенда (рис. 3.28), постепенно увеличивая емкость с 40 мкФ до 200 мкФ. Перед подключением дополнительных конденсаторов в каждом опыте нужно обязательно отключить исследуемую цепь от источника питания (выхода ЛАТРа), переведя выключатели (S1, S’1) в нижнее положение «откл», а перед проведением замеров вновь подключить к напряжению питания цепь с помощью тех же выключателей.

8. Во всех опытах измерить входное напряжение U, потребляемую активную мощность Р и протекающий по цепи ток I, соответственно цифровыми измерительными приборами: вольтметром V, ваттметром W и амперметром А (см. принципиальную схему на рис. 3.24 и панель стенда на рис. 3.26).

9. Напряжение на батарее конденсаторов UС и напряжение на катушке индуктивности UК с параметрами RK, LK измерить цифровыми вольтметрами, соответственно VC и VK, установленными на панели стенда (см. рис. 3.26).

10. Полученные результаты измерений каждого опыта занести в таблицу 3.5.

11. В конце измерительной части данной работы нужно отключить исследуемую цепь от источника питания и сам блок питания от силового щитка с помощью выключателей S1 и S1 ‘ на панели с мнемосхемой (рис. 3.26) и красной кнопки «выкл» выключателя на панели блока питания (рис. 3.27). Сообщить преподавателю об окончании измерений и приступить к вычислениям параметров цепи.

Источник

Резонанс напряжений и резонанс токов

В физике резонансом называется явление, при котором в колебательном контуре частота свободных колебаний совпадает с частотой вынужденных колебаний. В электричестве аналогом колебательного контура служит цепь, состоящая из сопротивления, ёмкости и индуктивности. В зависимости от того как они соединены различают резонанс напряжений и резонанс токов.

Резонанс напряжений

Резонанс напряжений возникает в последовательной RLC-цепи.

Резонанс напряжений

Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=wр, а следовательно и индуктивного и емкостного сопротивлений xL=xC. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке UL и на конденсаторе UC будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.

При резонансе напряжения UC и UL могут быть намного больше, чем напряжение источника, что опасно для цепи.

Резонанс напряжений

С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.

Резонанс напряжений

Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту

Резонанс напряжений

Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.

Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.

Резонанс токов

Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.

Резонанс токов

Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=wр, следовательно проводимости BL=BC. То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.

Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.

Резонанс токов

Выразим резонансную частоту

Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.

Явление резонанса может носить как положительный, так и отрицательный характер. Например, любой радиоприемник имеет в своей основе колебательный контур, который с помощью изменения индуктивности или емкости настраивают на нужную радиоволну. С другой стороны, явление резонанса может привести к скачкам напряжения или тока в цепи, что в свою очередь приводит к аварии.

Источник