Меню

Частота понижающий преобразователь напряжения



Рекомендации по применению понижающих DC/DC преобразователей

Ken Marasco, Analog Devices

В смартфонах, планшетных компьютерах, цифровых камерах, навигационных системах, медицинском оборудовании и множестве других портативных устройств с автономным питанием часто содержатся микросхемы, изготовленные по разным технологиям. Для работы таких устройств, как правило, требуется несколько независимых источников питания, причем напряжение каждого отличается от напряжения аккумулятора или внешнего сетевого адаптера.

На Рисунке 1 изображена типичная маломощная система, питающаяся от Li-Ion батареи. Диапазон напряжений батареи равен 3…4.2 В, в то время, как для микросхем требуются 0.8 В, 1.8 В, 2.5 В и 2.8 В. Проще всего получить необходимые напряжения с помощью LDO стабилизаторов. Но, к сожалению, вся мощность, не используемая в нагрузке, будет рассеиваться в форме тепла, делая LDO стабилизаторы неэффективными, когда VIN существенно превышает VOUT. Широко распространенная, и единственная, в случае нашего примера, альтернатива, существенно сокращающая потери – импульсный преобразователь, накапливающий энергию в магнитном поле индуктивности и отдающий ее в нагрузку при другом напряжении. Рассматриваемые в этой статье понижающие преобразователи («buck» или «step-down») позволяют получить на выходе напряжение меньшее, чем на входе. У повышающих преобразователей («boost» или «step-up»), которые мы будем рассматривать в следующей статье, наоборот, выходное напряжение больше входного. Импульсные преобразователи с внутренним ключевым МОП транзистором, называются импульсными стабилизаторами (switching regulators), в то время как преобразователи, для которых требуются внешние силовые транзисторы, называются импульсными контроллерами (switching controllers). В большинстве маломощных систем используют как LDO, так и импульсные преобразователи, и только при разумном сочетании обоих могут быть получены требуемые технические и ценовые характеристики устройства.

Рисунок 1. Типичная маломощная портативная система.

Как видно из Рисунка 2, понижающий преобразователь состоит из двух ключей, двух конденсаторов и индуктивности. Драйвер ключей должен формировать неперекрывающиеся последовательности управляющих импульсов, гарантируя, что в каждый момент времени будет замкнут только один ключ, и в схеме не будет сквозных токов. В Фазе 1 ключ B открыт, а ключ A закрыт. Катушка индуктивности подключена к входному напряжению VIN, и ток через нее течет от VIN в нагрузку. В Фазе 2 открыт ключ A, и закрыт B. Индуктивность подключена к «земле», и ток, спадая, переносит запасенную в катушке энергию в нагрузку.

Рисунок 2. Топология понижающего преобразователя (слева), форма напряжения и токов в различных точках схемы (справа).

Импульсные стабилизаторы могут работать в режиме непрерывной проводимости (continuous conduction mode – CCM), в котором ток индуктивности никогда не спадает до нуля, и в режиме прерывистой проводимости (discontinuous conduction mode – DCM), когда ток катушки индуктивности некоторое время может отсутствовать. В маломощных понижающих преобразователях прерывистый режим используется очень редко. Преобразователи обычно конструируют таким образом, чтобы пульсации тока (current ripple), обозначенные на Рисунке 2 как ΔIL, составляли 20 … 50% от номинального тока нагрузки.

В понижающем синхронном преобразователе, изображенном на Рисунке 3, функцию ключей A и B выполняют p- и n-канальный МОП транзисторы, соответственно. Термин «синхронный» (synchronous) указывает на то, что в качестве нижнего ключа используется МОП транзистор. Преобразователи с диодом Шоттки на месте нижнего ключа называются асинхронными, или несинхронными. В маломощных приложениях лучшую эффективность демонстрируют синхронные преобразователи вследствие меньшего падения напряжения на МОП транзисторе, по сравнению с диодом Шоттки. Однако КПД синхронного преобразователя при малой нагрузке может оказаться недопустимо низким, если нижний МОП транзистор не будет выключаться на то время, пока ток индуктивности равен нулю. Устранение этой проблемы требует дополнительных схемных решений, приводящих к усложнению микросхемы и увеличению ее цены.

Рисунок 3. Понижающий преобразователь состоит из генератора, контроллера ШИМ с петлей обратной связи и ключевых МОП транзисторов.

В современных маломощных синхронных понижающих преобразователях основным рабочим режимом является широтно-импульсная модуляция (ШИМ). В этом режиме частота переключения постоянна, а ширина импульсов (tON) изменяется в соответствии с требуемым выходным напряжением. Поставляемая в нагрузку средняя мощность пропорциональна коэффициенту заполнения D, что делает ШИМ эффективным средством контроля выходной мощности.

МОП ключи управляются контроллером ШИМ, для стабилизации выхода использующим обратную связь либо по току, либо по напряжению. Маломощные понижающие конвертеры обычно работают на частотах от 1 до 6 МГц. Более высокие частоты позволяют применять индуктивности меньших размеров, но расплатой за это становится снижение КПД, который падает на 2% при каждом удвоении рабочей частоты.

При малых токах нагрузки ШИМ не всегда является самым эффективным решением. Рассмотрим, к примеру, схему управления питанием видеокарты. При смене сюжетов изменяется ток нагрузки понижающего преобразователя, управляющего графическим процессором. ШИМ в режиме непрерывной проводимости способна стабилизировать питание в очень широком диапазоне выходных токов, но, по мере снижения нагрузки, КПД преобразователя стремительно падает вследствие возрастания относительной доли тока, потребляемого самим преобразователем. Поэтому в понижающих преобразователях, предназначенных для портативных приложений, используются дополнительные методы снижения мощности, такие как частотно-импульсная модуляция, или ЧИМ (pulse-frequency modulation – PFM), пропуск импульсов (pulse skipping) или же комбинация обоих методов.

При входе в экономичный режим (power-save mode – PSM) в понижающих преобразователях Analog Devices происходит следующее. К порогу ШИМ добавляется смещение, в результате которого выходное напряжение начинает подниматься и достигает величины, приблизительно на 1.5% превышающей номинальный уровень стабилизации ШИМ. В этот момент ШИМ выключается, оба ключа закрываются, и микросхема переходит в режим ожидания (idle mode). Выходной конденсатор COUT начинает разряжаться до тех пор, пока VOUT не упадет до уровня, при котором восстанавливается стабилизация ШИМ. Подключается индуктивность, и VOUT вновь начинает расти. Этот процесс повторяется до тех пор, пока ток нагрузки не превысит установленный порог.

ADP2138 – компактный понижающий DC/DC преобразователь с выходным током 800 мА и рабочей частотой 3 МГц. Типичная схема его включения показана на Рисунке 4. Рисунок 5 иллюстрирует благоприятное влияние на КПД автоматического переключения ШИМ/PSM. В некоторых случаях переменная частота переключения в режиме PSM затрудняет фильтрацию помех, поэтому многие понижающие преобразователи имеют вывод MODE (см. Рисунок 4), позволяющий пользователю принудительно включать режим ШИМ, или разрешать преобразователю переключаться между ШИМ и PSM автоматически. В отдельных микросхемах вывод MODE может предназначаться для динамического перехода в режим пониженного энергопотребления.

Рисунок 4. Типовая схема включения микросхем ADP2138/ADP2139.
Рисунок 5. Зависимость КПД преобразователя ADP2138 от тока нагрузки в режиме ШИМ с непрерывной проводимостью (а) и в режиме пониженного потребления (б).

Понижающие преобразователи улучшают КПД

Повышенный КПД продлевает время работы до смены или перезаряда батарей, что для новых портативных устройств можно считать одной из важнейших характеристик. Например, при использовании LDO стабилизатора ADP125 (Рисунок 6) Li-Ion аккумулятор способен отдавать в нагрузку ток 500 мА при напряжении 0.8 В. При этом КПД стабилизатора, равный

составляет лишь 19%. Вся неиспользуемая энергия, 81% (1.7 Вт), рассеивается корпусом в виде тепла, которое может стать причиной быстрого перегрева портативного устройства. Импульсный преобразователь ADP2138, рабочий КПД которого при входном напряжении 4.2 В и выходном 0.8 В равен 82%, позволяет повысить эффективность более чем в 4 раза и сократить выделение тепла. Вот почему в последние годы наблюдается бум разработки новых импульсных преобразователей для портативной аппаратуры.

Ключевые понятия, относящиеся к понижающим преобразователям

Диапазон входных напряжений (Input Voltage Range): Диапазон входных напряжений понижающего преобразователя определяет наименьшее допустимое напряжение источника питания. В справочниках этот параметр может быть представлен весьма широким диапазоном, но для эффективной работы схемы VIN всегда должно превышать VOUT. Например, чтобы получить стабилизированное выходное напряжение 3.3.В, входное напряжение должно превышать 3.8 В.

Собственный ток потребления, или ток общего вывода (Ground or Quiescent Current): Обозначаемый обычно буквами IQ постоянный ток, не идущий в нагрузку. Чем меньше IQ, тем выше КПД устройства. В спецификациях на микросхемы IQ может приводиться для самых разнообразных условий, включая блокировку микросхемы, режим облегченной нагрузки, режим ЧИМ или ШИМ. Поэтому лучше всего, если выбор понижающего преобразователя, наиболее подходящего для создаваемого приложения, будет основываться на фактических данных о КПД устройства при конкретных рабочих токах и напряжениях нагрузки.

Ток в режиме отключения (Shutdown Current): Входной ток, потребляемый преобразователем, отключенным по выводу разрешения. Как правило, для маломощных понижающих преобразователей этот ток значительно меньше 1 мкА. Этот параметр очень важен для портативных устройств с батарейным питанием, в которых предусмотрен спящий режим.

Точность стабилизации выходного напряжения (Output Voltage Accuracy): Понижающие преобразователи Analog Devices имеют высокую точность стабилизации. Так, благодаря заводской подстройке, погрешность устройств с фиксированным выходом при температуре 25 °C не превышает ±2%. Точность стабилизации приводится в спецификациях для различных значений температуры, входного напряжения и тока нагрузки, и для наихудшего случая выражается в процентах.

Нестабильность по входному напряжению (Line Regulation): Характеризует степень влияния изменения входного напряжения на выходное при номинальной нагрузке.

Нестабильность выходного напряжения при изменении нагрузки (Load Regulation): Этот параметр является мерой влияния изменений тока нагрузки на выходное напряжение. При медленном изменении нагрузки большинство понижающих преобразователей могут стабилизировать напряжение с очень высокой точностью.

Переходный режим при изменениях нагрузки (Load Transients): Ошибки переходного режима могут возникать при быстрых скачках тока нагрузки, вызывающих переключение режимов от ШИМ к ЧИМ, и наоборот. Параметры переходного режима не всегда приводятся в документации, но в большинстве описаний можно найти осциллограммы, иллюстрирующие реакцию на скачки нагрузки при различных рабочих условиях.

Ограничение тока (Current Limit): В понижающие преобразователи, подобные ADP2138, встроены защитные схемы, ограничивающие величину положительного тока, протекающего через p-МОП транзистор силового ключа и синхронный выпрямитель. Фактически, это означает ограничение тока, текущего от входа к выходу. Ограничитель отрицательного тока предотвращает появление в индуктивности тока обратного направления, вытекающего из нагрузки.

Мягкий старт (Soft Start): Это важная для понижающих преобразователей функция, заключающаяся в управлении скоростью нарастания выходного напряжения в целях ограничения бросков тока. Мягкий старт позволяет не допускать проседания напряжения подключенных к входу преобразователя батарей или высокоимпедансных источников питания. Внутренний цикл мягкого старта начинается после включения устройства по входу разрешения ENABLE (EN).

Время включения (Start-Up Time): Время между нарастающим фронтом сигнала разрешения и моментом достижения выходным напряжением VOUT 90% номинального уровня. Проверка этого параметра обычно выполняется при установившемся VIN при переходе вывода разрешения из состояния ВЫКЛ в состояние ВКЛ. В тех случаях, когда выводы EN и VIN соединены, время включения может существенно увеличиться, так как петле обратной связи требуется время для отработки ошибки. Время выключения понижающего преобразователя – важный параметр для приложений, в которых преобразователь часто включается и выключается, т.е., прежде всего, для портативных устройств.

Отключение при перегреве (Thermal ShutDown – TSD): Если температура перехода превышает установленный порог, защитная схема выключает преобразователь. Причиной перегрева кристалла может быть большой ток нагрузки, плохое охлаждение схемы или высокая окружающая температура. Схема защиты обязательно должна иметь гистерезис, чтобы не допускать включения преобразователя до возвращения температуры кристалла к установленному рабочему уровню.

Режим со 100% коэффициентом заполнения (100% Duty Cycle Operation): При провалах VIN, или при увеличении ILOAD понижающий стабилизатор может оказаться у порога, когда p-МОП транзистор должен быть открыт 100% времени, и VOUT начнет падать ниже требуемого уровня. ADP2138 плавно переводит схему в этот режим, а при изменении состояния входа немедленно перезапускается в режиме ШИМ, не допуская выбросов выходного напряжения.

Разрядный ключ (Discharge Switch): В некоторых устройствах при очень малой нагрузке напряжение на выходе преобразователя может сохраняться в течение некоторого времени после перевода системы в спящей режим. Если процесс последующего включения начнется до завершения разряда выходного напряжения, возможны блокировка или повреждение системы. В преобразователе ADP2139 имеется встроенный резистор сопротивлением порядка 100 Ом, через который происходит разряд выхода после подачи низкого уровня на вход EN, или при защитном отключении микросхемы.

Блокировка питания при пониженном напряжении (Undervoltage Lockout – UVLO): Эта функция гарантирует, что напряжение на нагрузку не будет подано раньше, чем входное напряжение преобразователя достигнет заданного порога. Важное значение блокировки заключается в возможности исключить подачу питания до установления рабочего уровня входного напряжения.

Приложение

Синхронные понижающие DC/DC преобразователи с выходным током 800 мА и рабочей частотой 3 МГц

Понижающие DC/DC преобразователи ADP2138 и ADP2139 оптимизированы для использования в беспроводных телефонах, персональных медиа плеерах, цифровых камерах и других портативных устройствах. Микросхемы могут работать в режиме принудительной ШИМ, в котором пульсации выходного напряжения минимальны, или же автоматически переключаться между ШИМ и PSM для увеличения КПД при облегченной нагрузке. Диапазоном входных напряжений от 2.3 до 5.5. В определяется способность преобразователей работать от стандартных источников питания, включая литиевые, щелочные и NiMH батареи. Выпускаются многочисленные опции с фиксированным выходным напряжением от 0.8 до 3.3 В, током нагрузки 800 мА и точностью 2%. Внутренний силовой ключ и синхронный выпрямитель улучшают эффективность преобразователя и сокращают количество необходимых внешних компонентов. Изображенная на Рисунке А микросхема ADP2139 отличается наличием дополнительного разрядного ключа. Микросхемы выпускаются в компактном 6-выводном корпусе WLCSP размером 1 × 1.5 мм, работают в диапазоне температур от –40 до +125 °C, и в партиях 1000 шт. продаются по $0.90 за один прибор.

Рисунок А. Функциональная схема ADP2139.

Перевод: AlexAAN по заказу РадиоЛоцман

Источник

Понижающий импульсный преобразователь напряжения, источник питания. Конструирование, проектирование. Выбор частоты. Прерывный, непрерывный ток. Выходной конденсатор фильтра

Как сконструировать понижающий импульсный преобразователь. Шаг 1. Как выбрать частоту работы контроллера, режим тока через индуктор, емкость конденсатора выходного фильтра (10+)

Понижающий импульсный преобразователь напряжения. Проектирование. Расчет — Шаг 1

Резистор R1 подстроечный 200 кОм — служит для установки максимально допустимого коэффициента заполнения. Правильное значение этого коэффициента заполнения мы рассчитаем. При наладке, отключив R6 и подключив вместо него осциллограф, добиваемся, чтобы коэффициент соответствовал расчетному.

Резистор R8 50 Ом. Нужен он для надежного и быстрого запирания VT2.

Диод VD1 маломощный, например, КД510

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Читайте также:  Параметры напряжения трехфазной сети

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Конденсатор C1 0.1 мкФ, согласно рекомендациям производителей контроллера.

Конденсатор C5 0.1 мкФ. Этот конденсатор задает скорость мягкого старта. Он заряжается током 1 мкА от контроллера. По мере роста напряжения на нем, растет максимально возможный коэффициент заполнения. Этот процесс продолжается, пока напряжение не будет ограничено диодом VD1 и подстроечным резистором R1.

Конденсатор C6 22 пФ, нужен он для того, чтобы фильтровать высокочастотные помехи, чтобы защита по току, реализованная на ножке 9 не срабатывала от помех.

Резистор R15 1 кОм. Он также, как и C5, нужен для фильтрации высокочастотных помех.

Выбор частоты работы контроллера

При выборе частоты работы контроллера мы руководствуемся следующими соображениями. Чем выше частота, тем меньше нужна индуктивность L1 и емкость C8 (а значит они будут меньшего размера), быстрее происходит установление выходного напряжения. С другой стороны, чем выше частота, тем больше потери на переключение, больше нагрев транзистора VT2 и диода VD2. При приближении частоты к 100 кГц требуется использовать специализированные ферриты и закладывать меньшее намагничивание сердечника. Поэтому частота выше 75 кГц без особой надобности нами не применяется. Если нам нужен малогабаритный относительно маломощный (до 50 Вт) источник питания, то выбираем частоту 30 — 70 кГц. Если требуется мощный источник, то выбираем 10 — 30 кГц.

[Емкость конденсатора C4, Ф] = 3 / (2 * [Сопротивление резистора R3, Ом] * [Частота работы контроллера D1, Гц])

Сопротивление резистора R3 обычно выбирается около 50 кОм.

Непрерывный / перывный ток

Решим, в каком режиме тока через дроссель будет работать наш источник. Подробный анализ достоинств и недостатков режима прерывного и режима непрерывного тока. В режиме прерывного тока устройство работает более устойчиво и надежно, мы обычно применяем его. Исключение — случаи, когда нужна очень большая мощность или низкий уровень помех. Для режима непрерывного характерны меньшие пульсации выходного напряжения, более равномерная нагрузка на силовой ключ и меньшие высокочастотные электромагнитные помехи.

Максимально допустимый коэффициент заполнения и индуктивность дросселя

Мы рекомендуем для понижающих преобразователей всегда ограничивать коэффициент заполнения ШИМ. Источники с таким ограничением работают более устойчиво и надежно. Это ограничение задается с помощью резистора R1.

[Максимальная средняя сила тока через дроссель L1, А] = 1.2 * [Максимальная сила тока нагрузки, А]

Коэффициент 1.2 нужен для учета переходных процессов. В установившемся режиме средняя сила тока через дроссель ровна силе тока нагрузки

Режим прерывного тока

[Максимальный коэффициент заполнения] = [Выходное напряжение, В] / [Минимальное входное напряжение, В]

При таком выборе коэффициента заполнения мы получим режим прерывного тока в установившемся режиме. В случае, если входное напряжение больше минимального, во время переходных процессов устройство на короткое время может переходить в режим непрерывного тока.

Индуктивность дросселя выбираем максимально возможной, но такой, чтобы получить прерывный режим. При таком выборе мы будем иметь минимально возможный для прерывного режима максимальный ток через ключ, что сделает коммутационные потери меньшими.

[Индуктивность дросселя L1, Гн] = [Максимальный коэффициент заполнения] * ([Минимальное входное напряжение, В] — [Выходное напряжение, В]) / (2.4 * [Частота работы контроллера D1, Гц] * [Максимальная сила тока нагрузки, А])

Коэффициент 2.4 образуется из коэффициента 2 и 20% запаса.

[Максимальная амплитуда пульсации тока через дроссель L1, А] = 1.2 * [Максимальная сила тока нагрузки, А]

Режим непрерывного тока

[Максимальный коэффициент заполнения] = 0.8

Иногда в для режима непрерывного тока максимальный коэффициент заполнения не ограничивают. Но мы рекомендуем всегда делать это для повышения стабильности работы. Обязательно надо ограничивать этот коэффициент, если применяется считывающий трансформатор тока, так как его сердечнику нужно время для гарантированного размагничивания.

Для режима непрерывного тока мы можем выбрать желаемую максимальную амплитуду пульсации тока через дроссель, тогда

[Индуктивность дросселя L1, Гн] = [Максимальный коэффициент заполнения] * ([Максимальное входное напряжение, В] — [Выходное напряжение, В]) / (2 * [Частота работы контроллера D1, Гц] * [Максимальная амплитуда пульсации тока через дроссель L1, А])

По полученным данным проектируем индуктор. Подробнее о расчете и проектировании индуктора.

Емкость выходного конденсатора

Выберем допустимую амплитуду пульсаций выходного напряжения

[Емкость конденсатора C8, Ф] = [Максимальная амплитуда пульсации тока через дроссель L1, А] / (8 * [Допустимая амплитуда пульсации выходного напряжения, В] * [Частота работы контроллера D1, Гц])

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Перечитал множество статей работы с 1156ЕУ3, но так и не понял, как именно задается выходное напряжение. От каких элементов оно зависит? Также буду очень благодарен, если если подскажете, как правильно рассчитать параметры понижающего преобразователя 100в на 28в 1000 Ватт. Заранее огромное спасибо. Читать ответ.

Полумостовой импульсный стабилизированный преобразователь напряжения, .
Как работает полу-мостовой стабилизатор напряжения. Где он применяется. Описание.

Бестрансформаторные источники питания, преобразователи напряжения без .
Расчет онлайн гасящего конденсатора бестрансформаторного источника питания.

Прямоходовый импульсный стабилизированный преобразователь напряжения, .
Как работает прямоходовый стабилизатор напряжения. Описание принципа действия. П.

Применение интегральных стабилизаторов напряжения (КРЕН). Типовые схем.
Как проектировать и рассчитывать источник питания на микросхеме интегрального ст.

Мобильное управление освещением. Звуковое реле. Включение / выключение.
Звуковое реле и схемы для включения освещения с помощью звонка на мобильный теле.

Двухполярный, двухполупериодный бестрансформаторный источник питания, .
Примеры схем двуполярного и двухполупериодного бестрансформаторного источника пи.

Повышающий импульсный преобразователь напряжения, источник питания. Ко.
Как сконструировать повышающий импульсный преобразователь. Как выбрать частоту р.

Источник

Преобразователи напряжения импульсные

Для преобразования электроэнергии, а точнее сказать, напряжения, можно использовать различные устройства, такие как трансформаторы, генераторы, зарядные устройства. Все они являются преобразователями электрической энергии. Так как для питания многих современных устройств нужно не только переменное, но и постоянное напряжение, то для этих целей не всегда есть возможность применять такой источник энергии, как аккумуляторная батарея. Именно она выдаёт идеальное постоянное напряжение путём химической реакции. Раньше для преобразования и понижения напряжения применялись только низкочастотные трансформаторы, работающие в паре с выпрямителем и сглаживающим фильтром. Однако они обладали очень большими габаритами. С ростом и развитием инновационных технологий в быту и на производстве стали появляться электронные устройства, требующие миниатюрных преобразовательных устройств. Так и появились импульсные преобразователи постоянного напряжения. Миниатюрность их требуется больше для переносных мобильных устройств, нежели для стационарных.

Все импульсные преобразователи можно разделить на следующие группы:

  1. Повышающие, понижающие, инвертирующие;
  2. Со стабилизацией и без неё;
  3. С гальванической развязкой и без неё;
  4. Регулируемые и нерегулируемые;
  5. Обладающие различным диапазоном входного и выходного напряжения.

Однако импульсные преобразователи собраны на более сложных схемах, нежели их предшественники классические понижающие выпрямители.

Принцип действия

Классические преобразователи с регулировкой выходного напряжения, как правило, управляют сопротивлением элемента, выполняющего регулировочную роль (транзистор или тиристор), через него постоянно протекает электрический ток, который и заставляет данный элемент нагреваться, при этом теряется значительная часть мощности. Главное преимущество такого устройства это минимум запчастей, простота, и отсутствие помех. Все остальные характеристики больше относятся к недостаткам.

Читайте также:  Схема регулятора напряжения opel

Импульсный преобразователь напряжения использует регулировочный элемент лишь в виде ключа. То есть он работает в двух режимах:

  • Закрыт, и не пропускает электрический ток;
  • Открыт, и имеет минимальное проходное сопротивление.

При этом каждый из режимов обладает низким выделением тепла, что даёт возможность показывать высокий коэффициент полезного действия (КПД). Нагрузка же получает непрерывно электроэнергию за счёт накопления и хранения её в таких электрических резервуарах, как:

  1. Индуктивность (катушках);
  2. Конденсаторах.

Регулировка происходит за счёт изменения времени замкнутого состояния ключевого элемента. Снижение габаритов, а также массы устройств, возможно только за счёт повышения частоты, от 20 кГц до 1 МГц. Импульсные устройства могут формировать на выходе как пониженное напряжение, так и с изменением полярности. За счёт применения в них трансформаторов, работающих на высоких частотах позволяет:

  1. Качественно изолировать вход от выхода;
  2. Получить на выходе устройства несколько выходных напряжений.

Как и любое устройство импульсный преобразователь обладает и недостатками, которыми являются:

  1. Сложность схемы и наличие большего количества запчастей, а значит потенциально существует больше причин поломки;
  2. Являются источниками помех.

Однако постоянное развитие технологий в этом направлении снижают эти недостатки к минимальным значениям.

Классификация и виды импульсных преобразователей

Выпускаемые преобразователи можно разделить на три основные группы по роду тока:

  1. Конверторы. Выполняют преобразование переменного напряжения (АС) в постоянное (DC). Они применяются в основном в промышленности и в быту для изолированного питания устройств потребителей, где используется переменное напряжение 380/220 Вольт с частотой 50 Гц;
  2. Инверторы. Они постоянное напряжение преобразуют в переменное. Применяются в устройствах бесперебойного питания, а также сварочных аппаратах где за счёт такого преобразования есть возможность уменьшения габаритов, а значит и веса устройств.
  3. Конверторы постоянного напряжения. Преобразуют DC в DC. Применяются для питания аккумуляторных батарей и их подзарядки в системах где питание происходит от одного конвертора AC/DC, а каждый уже непосредственный аккумулятор получает за счёт конвертора DC/DC нужное конкретно для него напряжение.

Самые распространённые схемы

Существует несколько классических стандартных схем, которые чаще всего применяются в импульсных преобразователях постоянного напряжения. Они обеспечивают разные величины соотношений между входным и выходным напряжением. Эти схемы раскрывают саму суть преобразователей и их принцип работы.

Понижающий преобразователь напряжения и его схема

Она используется для питания потребителей, нагрузка которых выражается большими токами и малым напряжением. Это первоочередная схема способная заменить классический низкочастотный преобразователь, в свою очередь, обеспечит увеличение КПД, уменьшит габариты и вес устройства. Транзистор VT выполняет роль электронного ключа, его работа лежит между двумя режимами осечки (полного закрытия) и насыщения (полного открытия). Расчет каждой детали производится непосредственно для конкретного потребителя и источника напряжения. Основным недостатком данной схемы является вероятность пробоя и появление полного большого входного напряжения на потребителе. Это, несомненно, приведёт к неисправности питаемого устройства.

Повышающий преобразователь и схема

Она может быть использована для получения напряжения на потребителе или на нагрузке больше чем на источники энергии. Применяется для подсветки дисплеев портативных компьютеров и для других электронных устройств где необходимо из небольшого напряжения сделать большее. Здесь имеет место процесс появления ЭДС самоиндукции, которая появляется после открытия транзистора. Вся накопленная энергия в дросселе попадает в нагрузку. При этом напряжение на выводах дросселя меняет свою полярность.

Инвертирующая схема

Может использоваться для получения напряжения, которое обладает обратной полярностью. При этом по значению U вых может быть меньше или больше U вх. Энергия, которая скапливается в дросселе направляется в нагрузку через сглаживающий конденсатор.

Как видно из этих схем все они не имеют гальванической развязки, то есть непосредственной изоляции вторичного выходного напряжения от входного.

Вот одна из таких схем, содержащих трансформатор. Энергия, которая накапливается в магнитном поле первичной обмотки трансформатора, в нагрузку выводится через вторичную обмотку. Трансформатор в этом случае может быть и повышающим и понижающим. Применяется очень часто в сетевых источниках где есть необходимость снижения входного напряжения от нескольких сотен вольт до единиц или десятков.

В момент когда транзистор закрывается трансформатор своей индуктивностью может вызвать на коллекторе высоковольтный скачок или всплеск, что несомненно, очень плохо и может привести к пробою полупроводникового элемента. Для этого и устанавливается RC-цепочка из конденсатора и катушки индуктивности, которая может быть подключена параллельно ключу или первичной обмотке. Такой обратноходовой импульсный преобразователь широко используется во многих сетевых источниках электрического тока с небольшой мощностью порядка 100 Вт.

Еще одна схема с трансформатором и прямым включением диода изображена на схеме ниже.

Используется в источниках питания около 250 Вт. Все эти рассмотренные выше преобразователи называются однотактные, потому что за один период преобразования в нагрузку будет поступать только один импульс. Основное их преимущество — это простота схемы состоящей всего из одного транзистора, работающего в режиме ключа, а недостаток намагничивание сердечника которое не даёт в полном объёме использовать с максимальным КПД этот магнитный материал. Передача энергии потребителю и подготовка трансформатора к следующему циклу размагничивания осуществляется с некоторой паузой которая и снижает их выходную мощность.

Вот несколько практических реализованных в жизни схем, основой которого является импульсный преобразователь. Первая из них имеет регулировочный элемент, выполненный на микросхеме, в свою очередь, обе схемы выполнены на полевых транзисторах. Расчет их выполнен под напряжение для нагрузки от 5 до 12 Вольт.

Методы регулировки

Существуют три вида регулирования в системах импульсных преобразователей:

  1. Широтно-импульсная модуляция (ШИМ) Распространённый метод, который применяется в массовом производстве управляющих микросхем;
  2. Частотно-импульсное регулирование (ЧИМ). Здесь продолжительность когда ключ находится во включенном режиме должна быть согласована с периодом колебаний в контуре, обеспечивающем малые значения тока и напряжения на ключе в момент переключения. Используется там, где реализованы резонансные схемы.
  3. Комбинированный вид. Метод свойственен системам, в которых используется автоколебательный процесс, а частота переключения находится в зависимости и от напряжений на входе, и выходе преобразователя, и от величины тока в цепи потребителя;
  4. Триггерный метод. Используем исключительно в схеме понижающего регулятора, в котором необходимо, чтобы при закрытом состояния ключа, то есть транзистора, величина напряжения в нагрузке увеличивалась.

Критерии выбора

Критерии которым должен отвечать качественный импульсный преобразователь и стабилизатор:

  • Продолжительный режим работы в экстремальных моментах когда ток в нагрузке максимален;
  • Полная автоматизация регулирования напряжения на выходе. Только тогда можно не бояться ни перегрузок, ни даже короткого замыкания;
  • Высокая надёжность устройства, обусловленная высоким показателем КПД и как следствие низким выделением тепла;
  • Минимальные габариты и вес;
  • Наличие гальванической развязки, которая исключает даже теоретически саму возможность попадания опасного напряжения входа, на выходные контакты, а значит на незащищенный потребитель.

Человек не знакомый с электроникой должен помнить при выборе нужного бытового стабилизатора напряжения что он должен соответствовать главным образом мощности тех приборов, к которым он будет подключен. А также падения и всплескам напряжения, которые могут возникнуть в сети. Лучше выбирать стабилизатор или импульсный понижающий преобразователь напряжения немного с запасом по мощности, так как количество используемых потребителей в квартирах и частных домах постоянно растёт.

Источник