Меню

Частичные разряды при переменном напряжении



22. Частичные разряды в газовых включениях при переменном и постоянном напряжениях.

Частичные разряды (ЧР) в высоковольтной изоляции возникают в газовых включениях или в прослойках жидкого диэлектрика.

Газовые включения могут появиться в изоляции в процессе изготовления вследствие усадки заливочных масс и компаундов, из-за неплотного прилегания электродов к неровной поверхности диэлектрика или при несовершенной пропитке многослойной изоляции. В эксплуатации они могут возникнуть вследствие растрескивания или расслоения изоляции от механических нагрузок или при разложении диэлектриков с выделением газов, например, при сильном нагреве или под действием ЧР, развивающихся первоначально в жидком диэлектрике.

Обычно размеры включений в высоковольтной изоляции в направлении электрического поля не превышают долей миллиметра и составляют весьма малую часть от полной толщины изоляции. Однако они представляют собой слабые места в изоляции, так как газы имеют меньшую электрическую прочность, чем твердые и жидкие диэлектрики. Кроме того, напряженность во включениях выше, чем в остальной изоляции, из-за различия диэлектрических проницаемостей газа и окружающих включение диэлектриков. По этой причине при приложении напряжения к изоляции ЧР возникают прежде всего в газовых включениях.

На переменном напряжении ЧР в газовых включениях возникают с определенной регулярностью в каждый полупериод. При каждом разряде в его канале рассеивается некоторая энергия, часть которой идет на разрушение изоляции.

При постоянном напряжении интенсивность ЧР значительно меньше: при постоянном напряжении периодичность возникновения ЧР составляет не менее нескольких десятков секунд.

23. Механизм повышения электрической прочности маслобарьерной изоляции при применении барьеров, покрытия и изолирования электродов.

Для повышения электрической прочности масляных промежутков используют покрытие и изолирование электродов твердой изоляцией, чаще всего слоями кабельной бумаги, а также барьеры из картона.

Покрытие имеет малую толщину (1-2 мм), поэтому поле в масле практически не изменяется, а собственная эл. прочность покрытия не имеет значения. Эффект от покрытия состоит в том, что снижается вероятность образования устойчивых «мостиков» в масле. Наибольший эффект дает покрытие при частоте 50 Гц в промежутках со слабо неоднородным полем и с маслом, загрязненным волокнами и влагой. Покрытие в этом случае повышает Uпp на 70-100 %.

При изолировании толщина твердого диэлектрика может достигать нескольких десятков миллиметров. Поскольку εчаст > εмасл, то существенно уменьшается напряженность поля вблизи электрода с изолированием. Поэтому изолирование наиболее эффективно в резко неоднородном поле, когда оно способствует выравниванию эл. поля. При изолированных электродах разряд вначале возникает в масле. Поэтому для конструкций с изолированием в качестве Unp принимают напряжение, при котором происходит пробой масляного промежутка.

Барьеры значительно повышают Uпp и применяются при всех формах поля, однако их действие в различных полях различно.

В резко неоднородных полях на барьер, расположенный вблизи электрода с малым радиусом кривизны, оседают заряды (заряженные частицы) движущиеся от этого электрода. Поле между барьером и вторым электродом выравнивается, поэтому прочность промежутка возрастает.

При импульсах или очень кратковременных приложениях напряжения 50 Гц наилучший эффект будет при расположение барьера вплотную к электроду с малым радиусом кривизны. При более длительном воздействии напряжения 50 Гц барьер выгоднее располагать от этого электрода на расстоянии 15 25% межэлектродного. При оптимальном расположении барьера напряжение сквозного пробоя повышается в 2-2,5 раза

В слабо неоднородном поле барьер повышает Uпp при 50 Гц благодаря тому, что препятствует образованию «мостиков». Наилучшее расположение барьера такое же, как и в резко неоднородном поле. Пробивное напряжение увеличивается при этом на 25 — 50 %.

Импульсную прочность барьер не увеличивает.

В установках ВН с масляным заполнением используется несколько барьеров. Барьер, ближайший к электроду с меньшим радиусом, кривизны, выравнивает поле, а остальные действуют как в слабо неоднородном поле,

Собственная электрическая прочность барьеров влияет на Unp: оно растет приблизительно пропорционально суммарной толщине барьеров, если она не превышает 25 – 30% всего межэлектродного расстояния. При дальнейшем увеличении суммарной толщины барьеров увеличение Uпp незначительно, т. к. разряды начинают развиваться по поверхности барьеров.

Источник

Частичные разряды в твердой изоляции

Частичные разряды – это разряды в газовых включениях твердой или жидкой изоляции. В процессе изготовления в твердой изоляции остаются поры и расслоения, заполненные газом. Газовые включения в изоляции могут возникать и в процессе эксплуатации в результате резких смен температур, неполных пробоев, растрескивания под действием механических нагрузок. Твердая изоляция с газовым включением представляется простейшей схемой замещения, приведенной на рис. 7.

Напряжение на газовой полости в соответствии со схемой замещения

Рис. 7. Разрез и схема замещения изоляции с газовым включением.

где U1 – напряжение на газовой полости; U – приложенное напряжение; С1 и С2 – емкости газовой полости и последовательно включенного с ней диэлектрика соответственно.

В случае цилиндрической полости, изображенной на рис. 7.

Подставив значение емкостей, получим:

В этих формулах εr1 и εr2 – относительные диэлектрические проницаемости газовой полости и твердого диэлектрика соответственно; d1 – толщина газовой полости; d – толщина изоляции; ε – электрическая постоянная.

Напряженность поля в газовой полости составит:

где E=U/d – средняя напряженность поля в изоляции при отсутствии газового включения.

Так как относительная диэлектрическая проницаемость твердых диэлектриков εr2 больше диэлектрической проницаемости газов εr1, то напряженность поля в газовой полости будет выше, чем средняя напряженность поля в электрической изоляции. Если напряженность поля в полости достигнет электрической прочности, то произойдет разряд в газе. Электрическая прочность воздуха не зависит от того, подводится ли напряжение к слою непосредственно металлическими электродами или же слой воздуха находится между диэлектрическими поверхностями. Электрическая прочность воздуха в газовой полости возрастает с уменьшением толщины и диаметра полости. Зависимость электрической прочности воздуха от толщины зазора выражается следующей приближенной формулой:

где Eпр – в вольтах на метр, а d1 – в метрах.

Приложенное к изоляции напряжение, при котором возникает разряд в газовом включении, получило название напряжение возникновения частичного разряда. Если U1 будет равно пробивному напряжению газа в полости, получим:

где Uч – напряжение возникновения частичных разрядов; Eпр – электрическая прочность газа в полости.

Читайте также:  Корпуса импульсный стабилизатор напряжения

При разряде в газовой полости происходит нейтрализация заряда, накопившегося на ее поверхности. Напряжение на газовой полости в месте разряда падает практически до нуля. Продолжительность разряда составляет 10 -8 -10 -9 с. После прекращения разряда происходит рекомбинация ионов, напряжение на полости восстанавливается и возникает новый разряд. Частота следования разрядов на постоянном токе определяется скоростью заряда емкости полости через сопротивление последовательно включенного слоя твердого диэлектрика, приложенным напряжением и формой полости. При переменном напряжении число частичных разрядов в единицу времени составляет:

где n1 – число частичных разрядов в единицу времени; ω/2π – частота переменного тока; U – приложенное к изоляции напряжение; Uч – напряжение возникновения частичных разрядов.

Формула справедлива при U>>Uч. Если U

Наибольшее повышение температуры диэлектрика будет иметь место в зоне мгновенных катода и анода, где выделяется наибольшее количество энергии во время разряда. Время выделения энергии составляет 10 -8 -10 -9 с., т.е. равно времени разряда. Мгновенная температура заметно отличается от среднего значения, до которого нагревается весь объем диэлектрика.

Разряд в газовой полости вызывает перераспределение электрического поля. Если до разряда наибольшая напряженность поля имела место в газовой полости, то в период разряда за счет резкого увеличения проводимости разрядного канала наибольшая напряженность поля возникнет в твердом диэлектрике у мгновенных катода и анода. Электроны и ионы бомбардируют стенки полости и, передавая энергию молекулам твердого тела, вызывают их разрушение с образованием ионов и радикалов. Одновременное действие активных химических продуктов, образующихся в разряде (озона, атомарного кислорода, окислов азота и т.д.), создает условия для изменения состава и структуры материала.

Таким образом, под действием частичного разряда происходит постепенное разрушение электрической изоляции, которое завершается пробоем.

Разрушающее действие частичных разрядов является суммой одновременно действующих факторов:

1) повышения температуры диэлектрика в месте действия разряда,

2) высокой местной напряженности поля в области мгновенных катода и анода,

3) бомбардировки стенок полости электронами и ионами,

4) излучения возбужденных и рекомбинирующих атомов и молекул,

5) реакции с химически активными продуктами.

Наибольшее разрушающее действие на электрическую изоляцию оказывают высокая температура и высокая местная напряженность поля. Эти два фактора в наибольшей степени предопределяют отказ электрической изоляции. Бомбардировка стенок полости электронами и ионами и действие лучистой энергии в конечном итоге вызывают повышение температуры диэлектрика. Вероятность того, что электрон и ион, образующиеся в газовом разряде, вызывают ионизацию и диссоциацию молекул твердого тела за счет передачи им части своей кинетической энергии, незначительна.

Для того чтобы электрон вызывал диссоциацию связи молекулы полиэтилена, он должен приобрести энергию в газовом разряде, приблизительно равную 1,2·10 -14 Дж (около 10 5 эВ). Энергия же электронов в газовом разряде примерно на три порядка меньше. Поэтому электрон, как правило, передает атомам свою кинетическую энергию и усиливает лишь их тепловые колебания, т.е. повышает температуру.

Если принять, что высокая местная напряженность поля и температура определяют разрушение твердого диэлектрика под действием частичного разряда, то можно воспользоваться термофлуктуационной теорией для описания времени до отказа изоляции. Уравнение «кривой жизни» электрической изоляции в этом случае имеет вид:

где qч и q – вероятности разрыва связи в единицу времени при действии частичного разряда и без него соответственно; τ – время до отказа изоляции; τч – суммарное время действия частичных разрядов на диэлектрик за время τ.

При записи выражения пренебрегаем временем развития разрушения.

Вероятность разрыва связи в единицу времени при действии частичного разряда составит:

где Tч – температура в зоне мгновенных анода и катода, развивающаяся в период действия частичного разряда.

Время действия частичного разряда:

где τ1 – время действия одного частичного разряда, равное 10 -8 -10 -9 с; n1 – число частичных разрядов за одну секунду.

Подставляя в эту формулу значение n1, получим:

где Eч – средняя напряженность поля появления частичных разрядов; E – приложенная напряженность.

Формула справедлива при U>>Uч. Если приложенное напряжение меньше Uч, то τч=0.

При эксплуатации электрической изоляции можно встретить следующие режимы ее работы:

1) приложенное напряжение меньше напряжения появления частичных разрядов,

2) приложенное напряжение много больше напряжения появления частичных разрядов,

3) приложенное напряжение превышает, но близко к напряжению появления частичных разрядов,

4) сложный режим электрического нагружения, когда приложенное напряжение изменяется во времени.

В первом режиме частичные разряды при всех режимах работы в электрической изоляции отсутствуют, т.е. τч равно нулю.

При втором режиме работы интенсивность частичных разрядов и первый член левой части уравнения «кривой жизни» много больше второго. В этом случае вторым членом можно пренебречь и уравнение «кривой жизни» электрической изоляции принимает вид:

После преобразований найдем:

В правую часть формулы входят характеристики электроизоляционного материала и электроизоляционной конструкции, которые для данного устройства постоянны, характеристики частичных разрядов, которые определяются размерами газового включения и давлением газа в полости и, следовательно, для данного устройства также постоянны, и действующие нагрузки. Если нагрузки не меняются, то правая часть будет постоянна и, следовательно, ωτ = const. Неизменность произведения частоты переменного тока на время до отказа электрической изоляции неоднократно подтверждалась в экспериментах при воздействии частичных разрядов. Однако постоянство будет соблюдаться при условии выполнения сделанных допущений, а именно:

1) приложенное напряжение много больше напряжения появления частичных разрядов;

2) приложенное напряжение при разных частотах одинаково;

3) затухание частичных разрядов отсутствует при всех изучаемых частотах.

Срок службы электрической изоляции при приложенном напряжении, много большем напряжения появления частичных разрядов, весьма мал, и такой режим работы может быть допущен для конструкций однократного действия, например для кабеля, питающего взрывное устройство.

Малый срок службы электрической изоляции при действии частичных разрядов обусловлен достаточно высокой температурой, достигающей 500-600 К. и повышенной местной напряженностью поля.

Третий режим работы, когда приложенное напряжение выше, но близко к напряжению появления частичных разрядов, требует расчета времени до отказа по формуле:

Выражение будет справедливо, если отсутствует затухание частичных разрядов, которое представляет собой явление уменьшения интенсивности частичных разрядов при увеличении времени приложения напряжения. При затухании частичных разрядов одновременно наблюдается возрастание напряжения их появления. Таким образом, если в электрической изоляции имеет место затухание частичных разрядов, то Eч будет зависеть от времени. Затухание частичных разрядов обусловлено двумя процессами, происходящими в газовом включении:

Читайте также:  Что понимают под релаксацией напряжений

1) повышением давления в закрытой полости в результате выделения газообразных продуктов разложения твердого диэлектрика,

2) образованием полупроводящих продуктов разложения твердого диэлектрика, оседающих на поверхности полости и шунтирующих газовое включение.

При повышении давления в газовом включении растет электрическая прочность газа, что приведет к увеличению Uч и снижению интенсивности разрядов (числа разрядов в единицу времени). Однако, учитывая, что газопроницаемость твердых диэлектриков не равна нулю, полное затухание частичных разрядов за счет повышения давления в полости произойти не может.

Разрушение полимерных диэлектриков под действием частичных разрядов сопровождается образованием свободного углерода, кислородсодержащих органических соединений, кислот и т.д. Эти продукты, имеющие повышенную проводимость, оседают на стенках газового включения и уменьшают на ней падение напряжения.

Затухание частичных разрядов зависит от формы и размеров газовых включений и температуры диэлектрика. При газовых включениях вытянутых в направлении поля, затухание происходит быстрее, чем в полостях, имеющих большие размеры в направлении, нормальном к электрическому полю. Повышение температуры замедляет процесс затухания частичных разрядов.

Затухание частичных разрядов приводит к увеличению реального срока службы электрической изоляции по сравнению с расчетным значением.

При четвертом режиме работы, когда приложенное напряжение изменяется во времени сложным образом, уравнение «кривой жизни» электрической изоляции преобразуется к следующему виду:

где qчi и qi – вероятности разрыва связи в единицу времени при i-м режиме работы электрической изоляции; τi – продолжительность действия частичных разрядов при i-м режиме; n – число режимов работы электрической изоляции до отказа.

Время работы электрической изоляции до отказа найдем по выражению

Если при каких-то режимах частичные разряды отсутствуют, то τчi будет равно нулю.

Формула описывает наиболее общий случай работы электрической изоляции, которая в эксплуатации подвергается сложному комплексу нагрузок, изменяющихся во времени.

| следующая лекция ==>
Характеристики надежности электрической изоляции | Функция распределения местной напряженности поля

Дата добавления: 2019-02-07 ; просмотров: 566 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Частичные разряды в изоляции высоковольтного оборудования

Частичные разряды

Частичный разряд (ЧР) – это искровой разряд очень маленькой мощности, который образуется внутри изоляции, или на ее поверхности, в оборудовании среднего и высокого классов напряжения. С течением времени, периодически повторяющиеся частичные разряды, разрушает изоляцию, приводя в конечном итоге к ее пробою. Обычно разрушение изоляции под действием частичных разрядов происходит в течение многих месяцев, и даже лет. Таким образом, регистрация частичных разрядов, оценка их мощности и повторяемости, а также локализация места их возникновения, позволяет своевременно выявить развивающиеся повреждения изоляции и принять необходимые меры для их устранения.

Основные термины

Определим основные термины и интегральные параметры, описывающие частичные разряды в высоковольтном оборудовании.

Все имеющиеся в мире стандарты по ЧР определяют некоторый набор «интегральных» величин, которые могут рассчитываться или непосредственно измеряться при тесте состояния изоляции. Стандарты разных стран могут различаться в деталях, но, в основных понятиях они совпадают. В Европе используется стандарт IEC-270. Расчетные параметры, получаемые в приборе R2200, ориентированы на американский стандарт, потому, что прибор создавался для совместной продажи на рынках России и Америки. В России тоже ведутся разработки своего стандарта по ЧР, однако в настоящее время он еще не завершен.

Все стандарты по ЧР базируются на понятии «кажущийся заряд«. Под «кажущимся» зарядом понимают такой заряд, который необходимо дополнительно и мгновенно «впрыснуть» в контролируемое оборудование, чтобы восстановить равновесие, нарушенное возникновением импульса ЧР. В этом определении очень важно то, что мы не знаем параметры реального заряда, например, внутри газового включения, а измеряем (замеряем) реакцию контролируемого высоковольтного объекта схемы на возникший ЧР. Заряд потому и назван «кажущимся», так как мы не знаем истинного значения реального ЧР. Измеряется кажущийся заряд ЧР в пКл (пикоКулонах). Если сложить все заряды, зарегистрированные в оборудовании за одну секунду, то получится ток ЧР – это ток, который протекает в цепи, контролируемой датчиком, дополнительно за счет возникновения ЧР. В среднем этот ток является чисто активным и характеризует потери в изоляции из-за возникновения ЧР.

Исторически важной характеристикой является «максимальный измеренный заряд«. Почти все изготовители высоковольтного оборудования до сих пор пользуются этой величиной (если вообще чем-то пользуются) на приемных испытаниях. Конечно, понятно, что нужно измерять, что-то статистически достоверное. В старых приборах статистика задается временем усреднения, а в современных приборах это решается удалением из рассмотрения случайных одиночных выбросов. Например, в определении американского стандарта это звучит так: «амплитуда наибольшего повторяющегося разряда при наблюдении постоянных разрядов». Следовательно, этот термин не предусматривает анализ отдельных выбросов. Чтобы сделать это определение более конкретным, ограничимся учетом только тех ЧР, которые повторяются не менее 10 раз за секунду. В нашем случае, при частоте питающей сети в 50 герц, мы получаем, что один импульс должен быть не реже, чем за 5 периодов сети. Для удобства пользования этот термин будем брать в следующей формулировке: импульс ЧР будем считать периодически повторяющимся, если частота его следования составит 0,2 импульса на один период питающей сети. Далее в тексте параметр будет отражаться как Qmax. Будем делать это одинаково для любой частоты сети, 50 и 60 герц.

Ценность этого параметра достаточно высока. Многие методы диагностики базируются на нем, хотя как отдельно взятый параметр – он скорее плохой, чем хороший, по крайней мере, при постоянном мониторинге под рабочим напряжением. Мы имеем много оборудования, где большие (по амплитуде) ЧР живут успешно годами, а малые, но с большой частотой повторения – означают реальную проблему.

Как посчитать потери вызванные ЧР. Это можно сделать достаточно просто, физически. При каждом импульсе ЧР мы дополнительно впрыскиваем из источника испытательного напряжения в контролируемый объект «кажущийся» заряд. Заряд инжектируется мгновенно и связан с конкретным напряжением питающей сети. Значит энергия, которая дополнительно вводится в оборудование из-за единичного ЧР, равна заряду, умноженному на мгновенное напряжение на объекте. Далее нужно просуммировать все импульсы и получить полную энергию ЧР. Если полную энергию поделить на время суммирования, то получим мощность ЧР. Этот параметр называется «потери энергии на частичные разряды».

Читайте также:  Плата преобразователя напряжения 12 220 алиэкспресс

Формула частичного разряда:

Формула частичного разряда

P – мощность разрядов, W,

T – время наблюдения, сек,

m –число зарегистрированных импульсов за время T, и

Qi*Vi – энергия i-го импульса

Основные параметры единичного частичного разряда

Базируясь на фазовом распределении импульсов ЧР, можно рассчитать мгновенное значение приложенного напряжения, конечно, если фазовая привязка импульсов выполнена правильно и достоверно рассчитана мощность. Однако не все приборы регистрируют фазовое распределение импульсов. А если эта функция в них реализована, то используемый датчик ЧР регистрирует импульсы с двух или даже трех фаз объекта. Какое напряжение следует брать в таком случае, с какой фазы? Для решения этого вопроса американский стандарт по ЧР предлагает использовать еще один диагностический параметр, который чаще всего называют PDI — «Partial Discharge Intensity». В этой величине вместо мгновенного напряжения в момент прохождения импульса ЧР берется его действующее значение, то есть одинаковое напряжение для всех импульсов, а не персональное для каждого. Проводя сравнительные расчеты можно убедиться, что различие параметров, рассчитанных в первом и во втором случаях, лежит в пределах 20 %. Этого вполне достаточно, чтобы корректно оценить уровень и строить тренд. Параметр PDI является одним из основных, используемых для оценки интенсивности ЧР в контролируемом объекте.

Очень важными являются еще два параметра единичного частичного разряда, которыми оперируют практически все разработчики диагностического оборудования и практические пользователи этого оборудования. Это частота и длительность импульса частичного разряда. Определим смысл этих параметров при помощи рисунка.

Параметры ЧР

Частота импульса частичного разряда. Несмотря на кажущуюся физическую простоту этого параметра, применительно к теории частичных разрядов он может иметь вариации. На рисунке видно, что первый фронт зарегистрированного импульса достаточно крутой, но уже после первого максимума сигнал «спадает» по более пологой кривой, которая постоянно меняет свою форму. В самом же конце импульса мы имеем затухающие колебания с более высокой частотой.

Что принять в данном случае за частоту импульса частичного разряда, начало, середину, или окончание импульса? Очевидно, что эти параметры могут различаться многократно, в несколько раз, что хорошо иллюстрирует приведенный рисунок.

Необходимо кратко пояснить физическую картину данного процесса. Первоначально импульс частичного разряда возникает непосредственно в зоне дефекта. Далее импульс распространяется, электромагнитным или электрическим способом, в окружающий объем, который также имеет свои электромагнитные свойства, отличные от свойств зоны дефекта. Различие свойств этой окружающей зоны приводит к появлению в регистрируемом сигнале колебаний с другой резонансной частотой. В конечном итоге импульс может затухнуть на еще большем удалении от места возникновения, например, это может произойти уже в элементах конструкции оборудования. Частотные свойства этих сред также имеют свои резонансные свойства, причем, что самое важное, с частотными свойствами зоны дефекта они никак не связаны.

Мы приходим к выводу, что непосредственно к частоте импульса частичного разряда в зоне дефекта имеет отношение только его передний фронт, который в наибольшей мере соответствует частотным свойствам разряда. Все остальное в сигнале относится к электромагнитным свойствам среды вокруг зоны дефекта. Чем больше времени прошло с момента возникновения импульса, тем больший объем вокруг дефекта вовлечен в процесс колебаний, тем больше частот может быть «замешено» в сигнале.

Истинная частота импульса частичного разряда максимально достоверно может быть определена только параметрами переднего фронта импульса, что полностью соответствует использованию математического выражения:

F = 1 / 4*T

Согласно этому выражению, величину «длительности одного периода импульса частичного разряда» можно определить как длительность переднего фронта импульса, умноженная на четыре. Данное определение не нужно путать с другим параметром, называемым «длительностью импульса частичного разряда». Этот параметр мы определим иначе.

Общая «длительность импульса частичного разряда». С расчетом этого параметра импульса частичного разряда дело обстоит существенно проще. Для этого необходимо только принять решение о моменте времени, который следует считать окончанием импульса частичного разряда. Дело в том, при медленном затухании импульса в определении этого параметра может быть большой произвол.

Самое простое решение – импульс частичного разряда можно считать завершившимся в тот момент времени, когда его амплитуда станет меньше значения в 10% от максимальной амплитуды данного сигнала. Ограничение в 10% является условным, это может быть и 5%, но именно 10% наиболее просто использовать на практике. При меньших значениях этого параметра окончание процесса труднее определить, так как он теряется в шуме.

Таким образом, каждый импульс частичного разряда характеризуется тремя параметрами:

  • «Q» – величина кажущегося заряда, количественно пропорциональная максимальной амплитуде импульса.
  • «F» – частота импульса частичного разряда, количественно обратно пропорциональная длительности первого фронта импульса, умноженной на четыре.
  • «T» – длительность импульса частичного разряда, определенная по уровню 10% от максимального значения импульса.

Причины возникновения частичных разрядов в изоляции высоковольтного оборудования

Появление частичных разрядов – начальная стадия развития большинства дефектов в высоковольтной изоляции. Возникшие частичные разряды со временем перерастают в искровые и дуговые разряды, приводящие к авариям.

Обычно частичные разряды возникают в полостях и зонах изоляции, имеющих дефекты – посторонние вкрапления, газовые пузырьки, зоны увлажнения.

При росте напряжения на участке дефекта возникает один или несколько частичных разрядов, приводящих к перераспределению потенциалов внутри объема изоляции.

Если дефект располагается ближе к внешней поверхности изоляции, к более высокому потенциалу, то частичных разрядов будет больше на положительной полуволне питающего напряжения, и меньше на отрицательной.

Если дефект располагается ближе к «земляному» потенциалу, то наооборот, разрядов будет больше на отрицательной полуволне питающего напряжения.

Книга Русова В.А. Измерение частичных разрядов в изоляции высоковольтного оборудования

Это статья взята из книги Русова В.А. «Измерение частичных разрядов в изоляции высоковольтного оборудования»

Источник