Меню

Arduino pro mini стабилизатор



Питание платы Arduino

Данный раздел имеет довольно таки большую значимость, если делать что то не так, как написано здесь, можно получить сгоревшую плату или глюки, причины которых не так очевидны и отследить их очень трудно. Если вы ожидали увидеть здесь советы по энергосбережению и режимам сна – они находятся в отдельном уроке про энергосбережение.

Перейдем к питанию платы: есть три способа питать Ардуино и вообще Ардуино-проект в целом, у каждого есть свои плюсы/минусы и особенности:

  • Бортовой USB порт
  • “Сырой” вход на микроконтроллер 5V
  • Стабилизированный вход Vin

Что касается земли (пины GND) то они все связаны между собой и просто продублированы на плате, это нужно запомнить. Пины 3.3V, 5V и GND являются источником питания для датчиков и модулей, но давайте рассмотрим особенности.

Питание от USB

Питание от USB – самый плохой способ питания ардуино-проекта. Почему? По линии питания +5V от USB стоит диод, выполняющий защитную функцию: он защищает порт USB компьютера от высокого потребления тока компонентами ардуино-проекта или от короткого замыкания (КЗ), которое может произойти по случайности/криворукости любителей ковырять макетные платы. КЗ продолжительностью менее секунды не успеет сильно навредить диоду и всё может обойтись, но продолжительное замыкание превращает диод в плавкий предохранитель, выпускающий облако синего дыма и спасающий порт компьютера от такой же участи.

Слаботочный диод имеет ещё одну неприятную особенность: на нём падает напряжение, причем чем больше ток потребления схемы, тем сильнее падает напряжение питания. Пример: голая ардуина без всего потребляет около 20 мА, и от 5 Вольт на юсб после диода нам остаётся примерно 4.7 Вольт. Чем это плохо: опорное напряжение при использовании АЦП крайне нестабильно, не знаешь, что измеряешь (да, есть способ измерения опорного напряжения, но делать это нужно вручную). Некоторые железки чувствительны к напряжению питания, например LCD дисплеи: при питании от 5V они яркие и чёткие, при 4.7 вольтах (питание от юсб) они уже заметно теряют яркость. Если подвигать сервоприводом или включить реле – на диоде упадет ещё больше и дисплей практически погаснет. При коротких мощных нагрузках (выше 500-600ма) микроконтроллер перезапустится, так как напряжение упадет ниже плинтуса.

Вы наверное предложите заменить диод перемычкой, чтобы питать схему от USB большим током, например от powerbank’а. Так делать тоже нельзя, потому что дорожки на плате не рассчитаны на большие токи (дорожка 5V очень тонкая и идёт через всю плату). Я думаю, что можно будет снять 1-2 Ампера с пина 5V, но, скорее всего, напряжение просядет. Также при КЗ вы скорее всего попрощаетесь с дорожкой вообще. Питайте силовую часть схемы либо отдельно, либо от того же источника питайте Arduino.

Питание в Vin

Питание в пин VinGND) – более универсальный способ питания ардуино-проекта, этот пин заводит питание на бортовой стабилизатор напряжения ардуино, на китайских платах обычно стоит AMS1117-5.0. Это линейный стабилизатор, что имеет свои плюсы и минусы. Он позволяет питать ардуино и ардуино-проект от напряжения 7-12 Вольт (это рекомендуемый диапазон, так то питать можно от 5 до 20 Вольт). Стабилизатор устроен так, что он выдает хорошее ровное напряжение с минимальными пульсациями, но всё лишнее напряжение превращает в тепло. Если питать плату и один миниатюрный сервопривод от 12 Вольт, то при активной работе привода стабилизатор нагреется до 70 градусов, что уже ощутимо горячо. По некоторым расчетам из даташита можем запомнить некоторые цифры:

  • При напряжении 7 Вольт (таких блоков питания я не встречал) в Vin можно снять с пина 5V до 2A, больше – перегрев. Отлично сработают два литиевых аккумулятора
  • При 12 Вольтах на Vin можно снять с пина 5V не более 500мА без риска перегрева стабилизатора.

Питание в пин Vin возможно только в том случае, если в Ардуино проекте (имеется в виду плата Ардуино и железки, подключенные к 5V и GND) не используются мощные потребители тока, такие как сервоприводы, адресные светодиодные ленты, моторчики и прочее. Что можно: датчики, сенсоры, дисплеи, модули реле (не более 3 одновременно в активном состоянии), одиночные светодиоды, органы управления. Для проектов с мощной 5 Вольтовой нагрузкой для нас есть только третий способ.

Питание в 5V

Питание в пин 5VGND) – самый лучший вариант питать плату и ардуино-проект в целом, но нужно быть аккуратным: пин идёт напрямую на микроконтроллер, и на него действуют некоторые ограничения:

  • Максимальное напряжение питания согласно даташиту на микроконтроллер – 5.5V. Всё что выше – с большой вероятностью выведет МК из строя;
  • Минимальное напряжение зависит от частоты, на которой работает МК. Вот строчка из даташита: 0 – 4 MHz @ 1.8 – 5.5V, 0 – 10 MHz @ 2.7 – 5.5V, 0 – 20 MHz @ 4.5 – 5.5V. Что это значит: большинство Arduino-плат имеют источник тактирования на 16 MHz, то есть Arduino будет стабильно работать от напряжения

4 Вольта (20 МГц – 4.5V, 16 МГц – около 4V). Есть версии Arduino на 8 МГц, они будут спокойно работать от напряжения 2.5V.

Самый популярный вариант – USB зардяник от смартфона, их легко достать, диапазон токов от 500ма до 3А – справится практически с любым проектом. Отрезаем штекер и паяем провода на 5V и GND, предварительно определив, где плюс/минус при помощи мультиметра или по цвету: красный всегда плюс, чёрный – земля, при красном плюсе земля может быть белого цвета. При чёрной земле плюс может быть белым, вот так вот. Точно туда же паяем все датчики/модули/потребители 5 Вольт. Да, не очень удобно это паять, но при известной схеме можно аккуратно собрать всё питание в отдельные скрутки и припаять уже их. Пример на фото ниже. Источником питания там является отдельное гнездо micro-usb, зелёная плата сразу над дисплеем.

Автоматический выбор источника

На платах Arduino (на китайских клонах в том числе) реализовано автоматическое переключение активного источника питания: при подключении внешнего питания на пин Vin линия питания USB блокируется. Если кому интересно, на схеме платы Arduino это выглядит вот так:

Питание “мощных” схем

Резюмируя и повторяя всё сказанное выше, рассмотрим варианты питания проектов с большим потреблением тока.

Питать мощный проект (светодиоды, двигатели, нагреватели) от 5V можно так: Arduino и потребитель питаются вместе от 5V источника питания:

Питать мощный потребитель от USB через плату нельзя, там стоит диод, да и дорожки питания тонкие:

Что делать, если всё-таки хочется питать проект от USB, например от powerbank’а? Это ведь удобно! Всё очень просто:

Если есть только блок питания на 12V, то у меня плохие новости: встроенный стабилизатор на плате не вытянет больше 500 мА:

Но если мы хотим питать именно 12V нагрузку, то проблем никаких нет: сама плата Arduino потребляет около 20 мА, и спокойно будет работать от бортового стабилизатора:

Автономное питание

Бывает, что нужно обеспечить автономное питание проекта, т.е. вдали от розетки, давайте рассмотрим варианты. Также для этих целей пригодится урок по энергосбережению и режимам сна микроконтроллера.

    Питание в порт USB

      Самый обыкновенный Powerbank, максимальный ток – 500 мА (помним про защитный диод). Напряжение на пине 5V и высокий уровень GPIO в этом случае будет равен

    4.7V (опять же помним про диод). Внимание! У большинства Powerbank’ов питание отключается при нагрузке меньше 200мА, т.е. об энергосбережении можно забыть;

  • Максимальный выходной ток с пина 5V – 500 мА!
  • Питание в пин Vin (или штекер 5.5×2.1 на плате UNO/MEGA)
    • Любой блок питания/зарядник от ноута с напряжением 7-18 Вольт
    • 9V батарейка “Крона” – плохой, но рабочий вариант. Ёмкость кроны очень небольшая;
    • Сборка из трёх литиевых аккумуляторов: напряжение 12.6-9V в процессе разряда. Хороший вариант, также имеется 12V с хорошим запасом по току (3А для обычных, 20А для высокотоковых аккумуляторов) для двигателей или светодиодных лент;
    • “Модельные” аккумуляторы, в основном Li-Po. В целом то же самое, что предыдущий пункт, но запаса по току в разы больше;
    • Энергосбережение – не очень выгодный вариант, т.к. стабилизатор потребляет небольшой, но всё же ток;
    • Максимальный выходной ток с пина 5V при питании в Vin: 2А при 7V на Vin, 500ma при 12V на Vin
  • Питание в пин 5V
    • Для стабильных 5V на выходе – литиевый аккумулятор и повышающий до 5V модуль. У таких модулей обычно запас по току 2А, также модуль потребляет “в холостом режиме” – плохое энергосбережение;
    • Литиевый аккумулятор – напряжение на пине 5V и GPIO будет 4.2-3.5V, некоторые модули будут работать, некоторые – нет. Работа МК от напряжения ниже 4V не гарантируется, у меня работало в целом стабильно до 3.5V, ниже уже может повиснуть. Энергосбережение – отличное;
    • Пальчиковые батарейки (ААА или АА) – хороший вариант, 3 штуки дадут 4.5-3V, что граничит с риском зависнуть. 4 штуки – очень хорошо. Новые батарейки дадут 6V, что является максимальным напряжением для МК AVR и при желании можно так работать;
    • Пальчиковые Ni-Mh аккумуляторы – отличный вариант, смело можно ставить 4 штуки, они обеспечат нужное напряжение на всём цикле разряда (до 4V). Также имеют хороший запас по току, можно даже адресную ленту питать.
    • Платы с кварцем (тактовым генератором) на 8 МГц позволяют питать схему от низкого напряжения (2.5V, как мы обсуждали выше), отлично подойдут те же батарейки/аккумуляторы, также для маломощные проекты можно питать от литиевой таблетки (3.2-2.5V в процессе разряда).
    • Максимальный выходной ток с пина 5V ограничен током источника питания
  • Arduino как источник питания

    Важный момент, который вытекает из предыдущих: использование платы Arduino как источник питания для модулей/датчиков. Варианта тут два:

    • Питание датчиков и модулей от 5V
      • При питании платы от USB – максимальный ток 500 мА
      • При питании платы в Vin – максимальный ток 2 А при Vin 7V, 500 мА при Vin 12V
      • При питании платы в 5V – максимальный ток зависит от блока питания
    • Питание датчиков от GPIO (пинов D и A) – максимальный ток с одного пина: 40 мА, но рекомендуется снимать не более 20 мА. Максимальный суммарный ток с пинов (макс. ток через МК) не должен превышать 200 мА. Допускается объединение нескольких ног для питания нагрузки, но состояние выходов должно быть изменено одновременно (желательно через PORTn), иначе есть риск спалить ногу при её закорачивании на другую во время переключения. Либо делать ногу входом (INPUT), вместо подачи на неё низкого (LOW) сигнала. В этом случае опасность спалить ноги отсутствует.

    Помехи и защита от них

    Если в одной цепи питания с Ардуино стоят мощные потребители, такие как сервоприводы, адресные светодиодные ленты, модули реле и прочее, на линии питания могут возникать помехи, приводящие к сильным шумам измерений с АЦП, а более мощные помехи могут дергать прерывания и даже менять состояния пинов, нарушая связь по различным интерфейсам связи и внося ошибки в показания датчиков, выводя чушь на дисплеи, а иногда дело может доходить до перезагрузки контроллера или его зависания. Некоторые модули также могут зависать, перезагружаться и сбоить при плохом питании, например bluetooth модуль спокойно может зависнуть и висеть до полной перезагрузки системы, а радиомодули rf24 вообще не будут работать при “шумном” питании.

    Более того, помеха может прийти откуда не ждали – по воздуху, например от электродвигателя, индуктивный выброс ловится проводами и делает с системой всякое. Что же делать? “Большие дяди” в реальных промышленных устройствах делают очень много для защиты от помех, этому посвящены целые книги и диссертации. Мы с вами рассмотрим самое простое, что можно сделать дома на коленке.

    • Питать логическую часть (Ардуино, слаботочные датчики и модули) от отдельного малошумящего блока питания 5V, то есть разделить питание логической и силовой частей, а ещё лучше питаться в пин Vin от блока питания на 7-12V, так как линейный стабилизатор даёт очень хорошее ровное напряжение. Для корректной работы устройств, питающихся отдельно (драйверы моторов, приводы) нужно соединить земли Ардуино и всех внешних устройств;
    • Поставить конденсаторы по питанию платы, максимально близко к пинам 5V и GND: электролит 6.3V 100-470 uF (мкФ, ёмкость зависит от качества питания: при сильных просадках напряжения ставить ёмкость больше, при небольших помехах хватит и 10-47 мкФ) и керамический на 0.1-1 uF. Это сгладит помехи даже от сервоприводов;
    • У “выносных” на проводах элементах системы (кнопки, крутилки, датчики) скручивать провода в косичку, преимущественно с землёй. А ещё лучше использовать экранированные провода, экран естественно будет GND. Таким образом защищаемся от электромагнитных наводок;
    • Соединять все земли одним толстым проводом и по возможности заземлять на центральное заземление;
    • Металлический и заземленный корпус устройства (или просто обернутый фольгой ? ), на который заземлены все компоненты схемы – залог полного отсутствия помех и наводок по воздуху.

    Ещё лучше с фильтрацией помех справится LC фильтр, состоящий из индуктивности и конденсатора. Индуктивность нужно брать с номиналом в районе 100-300 мкГн и с током насыщения больше, чем ток нагрузки после фильтра. Конденсатор – электролит с ёмкостью 100-1000 uF в зависимости опять же от тока потребления нагрузки после фильтра. Подключается вот так, чем ближе к нагрузке – тем лучше:

    Подробнее о расчёте фильтров можно почитать здесь.

    Индуктивные выбросы

    На практике самая подлая помеха обычно приходит при коммутации индуктивной нагрузки при помощи электромагнитного реле: от такой помехи очень сложно защититься, потому что приходит она по земле, то есть вас не спасёт даже раздельное питание проекта. Что делать?

    • Для цепей постоянного тока обязательно ставить мощный диод обратно-параллельно нагрузке, максимально близко к клеммам реле. Диод примет (замкнёт) на себя индуктивный выброс от мотора/катушки;
    • Туда же, на клеммы реле, можно поставить RC цепочку, называемую в этом случае искрогасящей: резистор 39 Ом 0.5 Вт, конденсатор 0.1 мкФ 400V (для цепи 220В);
    • Для сетей переменного тока использовать твердотельное (SSR) реле с детектором нуля (Zero-cross detector), они же называются “бесшумные” реле. Если в цепи переменного тока вместо реле стоит симистор с оптопарой, то оптопару нужно использовать опять же с детектором нуля, такая оптопара, как и SSR zero-cross будут отключать нагрузку в тот момент, когда напряжение в сети переходит через ноль, это максимально уменьшает все выбросы.

    Подробнее об искрогасящих цепях можно почитать вот в этой методичке.

    Главный Глупый Вопрос

    У новичков в электронике, которые не знают закон Ома, очень часто возникают вопросы вида: “а каким током можно питать Ардуино“, “какой ток можно подать на Ардуино“, “не сгорит ли моя Ардуина от от блока питания 12V 10A“, “сколько Ампер можно подавать на Arduino” и прочую чушь. Запомните: вы не можете подать Амперы, вы можете подать только Вольты, а устройство возьмёт столько Ампер, сколько ему нужно. В случае с Arduino – голая плата возьмёт 20-22 мА, хоть от пина 5V, хоть от Vin. Ток, который указан на блоке питания, это максимальный ток, который БП может отдать без повреждения/перегрева/просадки напряжения. Беспокоиться стоит не об Arduino, а об остальном железе, которое стоит в схеме и питается от блока питания, а также о самом блоке питания, который может не вывезти вашу нагрузку (мотор, светодиоды, обогреватель). Общий ток потребления компонентов не должен превышать возможностей источника питания, вот в чём дело. А будь блок питания хоть на 200 Ампер – компоненты возьмут ровно столько, сколько им нужно, и у вас останется “запас по току” для подключения других. Если устройство питается напряжением, то запомните про максимальный ток источника питания очень простую мысль: кашу маслом не испортишь.

    Источник

    Ардуино Про Мини: распиновка, характеристики

    Плата Arduino Pro Mini по размерам сравнима с флэшкой, но при этом имеет 14 полноценных портов ввода – вывода, 6 и которых – это аналоговые PWM порты. Платформа построена на базе микроконтроллера ATmega168 с частотой 8 МГц или 16 МГц (ATmega328). Рассмотрим подробнее схему платы Ардуино Про Мини, распиновку портов, характеристики и способы программирования (прошивки) данной модели.

    Arduino Pro Mini: распиновка платы

    Характеристики Arduino Pro Mini 5V не отличаются от платы Arduino Nano. Основное различие состоит в отсутствии микросхемы для прошивки Pro Mini по USB-UART. Связь с ПК производится по кабелю FTDI или с помощью дополнительной платы Sparkfun. Благодаря этому размеры платы более компактные, что позволяет использовать платформу в готовых мини-проектах, где важны небольшие габариты комплектующих.

    Нумерация портов и их назначение полностью дублируют плату Arduino UNO r3. Из 14 портов ввода – вывода, 6 портов могут работать в режиме ШИМ с разрешением 8 бит. Последовательная шина UART находится на портах 0 (RX) и 1 (TX), связь по протоколу I2C на Pro Mini Arduino с LCD дисплеем осуществляется на аналоговых портах с дополнительными функциями в работе: порт A4 (SDA) и порт A5 (SCL).

    Характеристики Arduino Pro Mini

    • Микроконтроллер: ATmega168 или ATmega328
    • Тактовая частота: 8 МГц и 16 МГц
    • Входное напряжение питания: 3,3-12 В или 5-12 В
    • Напряжение логических уровней: 3,3 или 5 В
    • Портов ввода-вывода общего назначения: 20
    • Максимальный ток с пина ввода-вывода: 40 мА
    • Портов с поддержкой ШИМ: 6
    • Портов, подключённых к АЦП: 8
    • Разрядность АЦП: 10 бит
    • Flash-память: 16 кб
    • SRAM-память: 1 кб
    • EEPROM-память: 512 байт
    • Габариты платы: 33×18 мм

    Arduino Pro Mini: схема платы

    Arduino Pro Mini: питание платы, порты

    Платы Arduino Pro выпускаются с двумя вариантами питания – 3,3 Вольта для микроконтроллера с частотой 8 МГц и 5 Вольт для микроконтроллера с частотой 16 МГц. Обе версии подключаются к источнику питания через кабель FTDI или плату Sparkfun. Стабилизированное напряжение 3,3 В или 5 В (в зависимости от модели) можно подать на порт VCC, не регулируемый источник подключается к порту RAW.

    Pro Mini : питание от внешнего источника

    5V – на пин подается 5 В от внутреннего стабилизатора
    3.3V – на пин подается 3,3 В, можно использовать для подключения устройств
    GND – пин для вывода земли
    VIN – пин для подключения внешнего источника питания
    IREF – пин для информирования о рабочем напряжении платы

    Arduino Pro Mini: прошивка, программирование

    Микропроцессор Arduino Pro Mini разработан со встроенным загрузчиком, т.е. запись скетчей в плату производится без использования программаторов. Это значительно облегчает работу с платой, особенно новичкам. Прошивка Arduino Pro Mini ATmega328 производится в среде Arduino IDE 1.8, которую можно скачать на сайте разработчика www.arduino.cc. Дополнительные драйвера для Pro Mini Arduino не требуются.

    Pro Mini поддерживает три типа памяти:

    Flash–память объемом 16 кБ, используется для хранения прошивки. Когда в контроллер записывается программа, она сохраняется именно во Flash–память. Чтобы очистить Flash–память следует загрузить пустой скетч (программу).

    SRAM — это оперативная память объемом 1 кБ на Arduino Pro Mini. Здесь хранятся переменные, создаваемые в скетче. SRAM — это энергозависимая память, при отключении внешнего источника питания — данные удалятся.

    EEPROM — это энергонезависимая память в 512 байт. Сюда можно сохранять данные, которые при отключении от источника питания не удалятся. Минус данной памяти в ограничении циклов перезаписи — не более 100 тысяч раз.

    Источник

    Arduino Pro Mini – распиновка и подключение

    Описание платы

    Свойства arduino pro mini аналогичны, как и у платы Ардуино Уно и Нано. Их отличие заключается в невозможности прошить Pro Mini по USB-UART. Вместо этого для создания связи с компьютером используется проводник FTDI с преобразователем интерфейса или дополнительная плата Sparkfun. Также есть отличия по скорости, с которой работает чип. У arduino про мини скорость ниже, чем у Ардуино уно, но это практически не сказывается на проектах.

    Работать с Ардуино про мини нужно аккуратно. Если пользователь сожжет чип, подав на него чрезмерное напряжение, его будет невозможно вытащить и заменить.

    Разъемы не припаяны к платформе. Произвести подключение можно как через разъемы, так и навесным монтажом. Ножки можно припаять.

    Существует 2 модели микроконтроллера arduino pro mini – на 3,3 В и 5 В. В первой используется тактовая частота 8 МГц, вторая работает на 16 МГц. Какая именно это модель, должно быть указано на корпусе.

    Скетч в микроконтроллер традиционно записывается через среду разработки Arduino IDE. Для загрузки кода потребуются специальные переходники. Изначально продается с уже установленной прошивкой.

    Технические характеристики микроконтроллера arduino pro mini:

    • Рабочее напряжение 3,3 В и 5 В (в зависимости от модели);
    • 14 пинов, 6 из которых используются как выводы ШИМ;
    • Постоянный ток для входа и выхода 40 мА;
    • Суммарный ток выводов – не более 200 мА;
    • 16 Кб флэш памяти, 2 Кб используются для загрузчика;
    • 1 Кб оперативной памяти;
    • 512 байт eeprom;
    • Тактовая частота – 8 МГц или 16 МГц в зависимости от модели;
    • I2c интерфейс;
    • Размеры платы 18х33 мм.

    Питание можно подавать тремя способами:

    • Через переходник FTDI;
    • При подаче стабилизированного напряжения на контакт Vcc;
    • При подаче напряжения на контакт RAW.

    Какие проекты можно реализовать на базе Ардуино Про Мини:

    • Управляемые конструкции для квадрокоптера;
    • Таймер;
    • Устройство для анализа влажности почвы;
    • Автоматический полив растений;
    • Устройство для измерения осадков и скорости ветра;
    • Автоматизация аквариума.

    И многие другие проекты для дома и дачи.

    Схема и распиновка Pro Mini

    Принципиальная схема платы Ардуино изображена ниже.

    Схема и распиновка Pro Mini

    Пинов у микроконтроллера 14, каждый из которых может настраиваться как вход или выход. Выводы помечены цифровым номером, аналоговые имеют маркировку А. Рабочее напряжение – 3,3 В или 5 В.

    • Последовательная шина – 0 и 1 (RX, TX). Предназначены для приема и передачи данных.
    • Внешнее прерывание – 2 и 3. Могут использоваться для вызова прерывания.
    • ШИМ выводы – 3, 5, 6, 9, 10, 11.
    • SPI – 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK).
    • Светодиодный индикатор – 13.

    6 аналоговых контактов имеют разрешение 10 бит. Некоторые выводы имеют дополнительный функционал:

    • I2C – A4 (SDA), A5 (SCL).

    Также плата оснащена дополнительным выводом Reset. При низком уровне перезагружает микроконтроллер.

    Прошивка arduino pro mini

    Прошивка arduino pro mini

    Миниатюрные размеры платы не позволяют прошить ее без внешней помощи. Есть несколько способов заливки скетча в микроконтроллер:

    • Через адаптер USB в TTL;
    • Через Ардуино Уно;
    • Через SPI интерфейс с помощью любой платы ардуино с разъемом для подключения к компьютеру.

    Самым простым методом является первый.

    Прошивка через адаптер USB в TTL

    В продаже можно найти специальный адаптер – UART переходник. Видов таких переходников много, стоимость каждого изделия невысокая. Советуется приобретать переходники с контактами RST или DTR, они упрощают процесс прошивки.

    Для прошивки нужно подключить адаптер в Ардуино: нужно соединить земли с одного и другого устройства, Vcc – на +5В или +3,3 В (в зависимости от модели), RX – TX, TX – RX. Затем конструкцию нужно подключить к компьютеру, установить драйвер и начать прошивку. Компьютер определит, к какому порту подключена плата. Драйвер можно скачать с официального сайта. Скачанный архив нужно распаковать и установить.

    Затем нужно запустить среду разработки Adruino IDE, выбрать нужную плату и номер порта и загрузить микропрограмму. Это делается следующим образом:

    • Нажать «Загрузить»;
    • Затем начнется компиляция – появится надпись «Компиляция скетча»;
    • После появление надписи «Загружаем» нужно нажать на плате кнопку Reset (в переходниках с RST или DTR нажимать кнопку не нужно).

    Важно! Нажатие на Reset должно быть кратковременным.

    Скетч будет загружен в микроконтроллер. Об успешном окончании процедуры можно понять по мигающему светодиоду.

    Прошивка через Ардуино Уно

    Для прошивки потребуется классическая плата Ардуино Уно в DIP корпусе. На ней должен быть специальный разъем, из которого нужно вытащить аккуратно микроконтроллер. Важно делать все действия внимательно, чтобы не погнуть ножки процессора.

    Проводами нужно подключить arduino pro mini к разъему. Как подключить контакты – RX-RX, TX-TX, GND-GND, 5V-VCC, RST-RST.

    После подключения можно начать стандартную загрузку скетча через Arduino IDE.

    Прошивка через SPI интерфейс

    Этот способ является самым неудобным и трудоемким. Прошивание платы производится в 2 этапа:

    • Прошивка микроконтроллера Ардуино Уно как ISP программатора;
    • Настройка среды разработки и загрузка кода в Arduino Pro Mini.

    Алгоритм проведения первого этапа:

    • Запуск среды разработки Arduino IDE;
    • Открытие «Файл» – «Примеры» – «11. ArduinoISP» – «ArduinoISP»;
    • Далее «Инструменты» – «Плата» – «Ардуино уно»;
    • «Инструменты» – «Порт», и выбирается нужный номер COM порта;
    • Далее нужно произвести компиляцию и загрузить код в Ардуино Уно.

    Затем обе платы нужно соединить проводниками по приведенной схеме: 5V – VCC, GND – GND, MOSI (11) – MOSI (11), MISO (12) – MISO (12), SCK (13) – SCK (13).

    Теперь нужно настроить Arduino IDE для Arduino Pro Mini. Это делается следующим образом:

    • «Инструменты» – «Плата» – выбор нужной платы Arduino Pro Mini;
    • В том же меню выбирается «Процессор» – выбор соответствующего процессора с нужной тактовой частотой;
    • Затем нужно установить порт, к которому подключена плата;
    • «Инструменты» – «Программатор» – Arduino as ISP;
    • Затем нужно загрузить скетч через программатор.

    Важно отметить, что загрузка кода должна происходить через специальное меню «загрузить через программатор». Здесь можно запутаться, потому такой способ и неудобен. Загрузка обычным способом приведет тому, что код зальется в Ардуино Уно.

    После проведенной загрузки перепрошить микроконтроллер через переходник больше не получится. Придется заливать новый bootloader через «записать загрузчик».

    Если при каком-либо виде загрузки прошивки возникают проблемы, нужно проверить подключение платы.

    Программирование на Ардуино про мини

    Используется стандартная среда разработки Arduino IDE

    Используется стандартная среда разработки Arduino IDE. После того как устройство подключено к компьютеру, нужно правильно выбрать плату в списке. Главное не перепутать Ардуино на 3,3 В и на 5 В. Какая именно используется, должно быть написано на корпусе.

    В пункте Serial Port выбирается нужный порт, к которому подключена плата. Затем можно загружать на плату программу, путем нажатия на кнопку Upload.

    Загрузка может длиться долго и в итоге выдать ошибку. Чтобы ее избежать, во время заливки скетча нужно нажать кнопку reset, когда появится надпись Binary sketch size: xxx bytes. Во время загрузки на плате будут загораться светодиодные индикаторы. После заливки скетча нужно отсоединить микроконтроллер и подать на него напряжение.

    Сравнение характеристик разных плат Ардуино

    Основная характеристика, по которой Ардуино про мини отличается от остальных плат – это размеры. Габариты Arduino Pro Mini составляют всего 1,8 см х 3,3 см. Немного большую длину имеет плата Ардуино Нано – 1,9 см х 4,3 см. Плата Ардуино Уно больше примерно в 2 раза, ее габариты составляют 6,9 см х 5,3 см. Arduino Mega имеет самые крупные габариты – 10,2 см на 5,4 см.

    Количество пинов также различно. Ардуино про мини, как Ардуино Нано и Ардуино Уно, имеет 14 цифровых пинов. Ардуино Мега оснащена 54 цифровыми входами/выходами, из которых 15 поддерживают ШИМ.

    Важное отличие Arduino Pro Mini от остальных плат – отсутствие прошивки по USB-UART. Остальные микроконтроллеры можно прошить таким способом, кроме Ардуино Нано. Она прошивается с помощью преобразователя rt232.

    Источник

    Читайте также:  Что такое стабилизатор изображения типы